2018 MATH1010 Lecture 3: Limit Charles Li

The lecture note was used during 2016-17 Term 1. It is for reference only. It may contain typos. Read at your own risk.

1 Limit of a function

Definition 1 If f(x) gets closer and closer to a number L as x gets closer and closer to c from both sides, then L is the **limit** of x as x approaches c. Denoted by

 $\lim_{x \to c} f(x) = L.$

Example 1

$$f(x) = x + 1, \text{ find } \lim_{x \to 1} f(x)$$

x	0.9	0.99	0.999	1	1.001	1.01	1.1
f(x)	1.9	1.99	1.999	2	2.001	2.01	2.1
T T 71		1	1 0	1	. 1 . 1	e ()	

When x approaches 1 from both sides, f(x) approaches 2. Therefore $\lim_{x \to 1} f(x) = 2$.

Remark: 1. The table only gives you an intuitive idea, this is **not** a rigorous proof. 2. **Don't** think that the limit is always obtained by substituting x = 1 into f(x).

Example 2 $f(x) = -$				$\begin{cases} x+1 & \text{if } x \neq \\ \text{undefined} & \text{if } x = \end{cases}$		-,				
	x	0.9	0.99	0.999	1	1.001	1.01	1.1		
	f(x)	1.9	1.99	1.999	undefined	2.001	2.01	2.1		
When x approaches 1 from both sides, $f(x)$ approaches 2. Therefore $\lim_{x \to 1} f(x) =$										

Disregard the value of f at 1, the limit of f(x) when x tends to 1 is always 2.

2.

Example 3 $f(x) = \begin{cases} x+1 & \text{if } x \neq 1, \\ 10 & \text{if } x = 1. \end{cases}$ 0.9 0.99 0.9991 1.0011.011.1 x1.92.0012.01 2.1f(x)1.991.99910

When x approaches 1 from both sides, f(x) approaches 2. Therefore $\lim_{x \to 1} f(x) = 2$.

The limit **depends only on** the value closed to x = 1, but **does not** depend on the value at x = 1.

Example 4

Define $f : \mathbf{R} \setminus \{0\} \to \mathbf{R}$ by $f(x) = \frac{1}{x^2}$.

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	10^{2}	10^{4}	10^{6}	undefined	10^{6}	10^{4}	10^{2}

When x approaches 0, f(x) tends to $+\infty$ (not a real number). So $\lim_{x\to 0} f(x)$ does not exist. But we still write $\lim_{x\to 0} f(x) = +\infty$.

2 Left hand limit and right hand limit

Definition 2 If f(x) approaches L as x tends towards c from the left (x < c), we write $\lim_{x\to c^-} f(x) = L$. It is called the **left hand limit** of f(x) at c. If f(x) approaches L as x tends towards c from the right (x > c), we write $_{x\to c^+}f(x) = L$. It is called the **right hand limit** of f(x) at c.

Example 5 Recall

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$
$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0.$$
$$\lim_{x \to 0^-} |x| = \lim_{x \to 0^-} (-x) = 0.$$

For this case $\lim_{x\to 0^+} |x| = \lim_{x\to 0^+} |x|$. Then $\lim_{x\to 0} |x| = 0$ by the following proposition.

Proposition 3 $\lim_{x\to c} f(x) = L$ if and only if $\lim_{x\to c^-} f(x) = L$ and $\lim_{x\to c^+} f(x) = L$. (i.e., both left hand limit and right hand limit exist and is equal to L)

Example 6 Define $f : \mathbf{R} \to \mathbf{R}$,

$$f(x) = \begin{cases} x+1 & \text{if } x \ge 0, \\ x^2 & \text{if } x < 0. \end{cases}$$

and

$$\lim_{x \leftarrow 0^-} f(x) = 0$$

Remark: The left hand limit or the right hand limit may not be the same. **Challenge question** (you can do this if you are bored during the lecture. I will buy you a drink if you are the first one to give me a complete/reasonable solution.) For $x \ge 0$, define

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q}, \, p, q \text{ are integers and coprime.} \\ 0 & \text{otherwise.} \end{cases}$$

e.g. $f(\sqrt{2}) = 0, f(\frac{3}{5}) = \frac{1}{5}$. Show that

$$\lim_{x \to 0^+} f(x) = 0.$$

3 Properties

Proposition 4

1. If k is a constant, then $\lim_{x \to c} k = k$.

$$2. \lim_{x \to c} x = c.$$

Proposition 5 If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist, then

1. $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$ 2. $\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$ 3. $\lim_{x \to c} (f(x)g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$

4.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \quad \text{if } \lim_{x \to c} g(x) \neq 0.$$

Replacing $\lim_{x\to c} by \lim_{x\to c^-} or \lim_{x\to c^+}$, we can obtain similar result.

Proposition 6 If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to L} g(x) = M$. then $\lim_{x \to c} g(f(x)) = M.$

Example 7 Find $\lim_{x\to 2} (3x^2 - 2)$. Slow motion! Too much details Step 1 $\lim_{x \to 2} x = 2$. so $\lim_{x \to 2} x^2 = \lim_{x \to 2} (x \cdot x) = \lim_{x \to 2} x \cdot \lim_{x \to 2} x = 2 \cdot 2 = 4$. Step 2 $\lim_{x \to 2} 3 = 3$, $\lim_{x \to 2} x^2 = 4$. So $\lim_{x \to 2} 3x^2 = \lim_{x \to 2} 3 \cdot \lim_{x \to 2} x^2 = 3 \cdot 4 = 12$. Step 3 $\lim_{x \to 2} 3x^2 = 12$, $\lim_{x \to 2} 2 = 2$. $\lim_{x \to 2} (3x^2 - 2) = \lim_{x \to 2} 3x^2 - \lim_{x \to 2} 2 = 12 - 2 = 10$. Shorton answer Factor! Shorter answer. Faster! $\lim_{x \to 2} (3x^2 - 2) = 3(\lim_{x \to 2} x)^2 - 2 = 12 - 2 = 10.$ **Example 8** Find $\lim_{x \to -1} \frac{4x^2 - 3}{2x - 1}$.

Answer

$$\lim_{x \to -1} \frac{4x^2 - 3}{2x - 1} = \frac{4(\lim_{x \to -1} x)^2 - 3}{2\lim_{x \to -1} x - 1} = \frac{4 \cdot 1 - 3}{2(-1) - 1} = -\frac{1}{3}.$$

Example 9 Define $f : \mathbf{R} \to \mathbf{R}$,

$$f(x) = \begin{cases} x+1 & \text{if } x \ge 0, \\ x^2 & \text{if } x < 0. \end{cases}$$

Compute $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$. Answer:

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+1) = 1$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x^{2} = 0.$$

What's wrong about the following calculation?

$$\lim_{x \to 0} x \frac{1}{x^2} = \lim_{x \to 0} x \lim_{x \to 0} \frac{1}{x^2} = 0 \lim_{x \to 0} \frac{1}{x^2} = 0.$$

So $\lim_{x\to 0} \frac{1}{x} = 0$. Why it is wrong?: because we have to assume the existence of all the involved limit.

Example 10 Find $\lim_{x\to 1} \frac{x^2 - 1}{x^2 - 3x + 2}$. We can't directly use property of division of limit because the denominator $\lim (x^2 - 3x + 2) = 1^2 - 3 \times 1 + 2 = 0.$

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)}.$$

Cancel out the common factor. The cancellation only affect the value of the function at x = 1. The value of the function at other places remains the same. So the limit remains unchanged. The above

$$= \lim_{x \to 1} \frac{x+1}{x-2} = \frac{1+1}{1-2} = -2.$$

Technique Generally to find

$$\lim_{x \to c} \frac{p(x)}{q(x)}$$

where p(x), q(x) are polynomial. We have

- (1) If $q(c) \neq 0$, then the answer is $\frac{p(c)}{q(c)}$.
- (2) If q(c) = 0. Then
 - (a) If $p(c) \neq 0$, then the limit does not exists.
 - (b) If p(c) = 0, then we need to factorize p(x) and q(x). It is know that x c is a factor for both p(x) and q(x). So we can write $p(x) = (x c)p_1(x)$ and $q(x) = (x c)q_1(x)$. Then we have

$$\lim_{x \to c} \frac{p(x)}{q(x)} = \lim_{x \to c} \frac{p_1(x)}{q_1(x)}$$

Example 11 Compute

$$\lim_{x \to 1} \frac{x^3 - 5x + 4}{x^2 + 2x - 3}.$$

Answer Write $p(x) = x^3 - 5x + 4$ and $q(x) = x^2 + 2x - 3$. Because p(1) = q(1) = 0, x - 1 is a factor of p(x) and q(x). We obtain

$$p(x) = (x - 1)(x^2 + x - 4)$$
 and $q(x) = (x - 1)(x + 3)$.

Then

$$\lim_{x \to 1} \frac{x^3 - 5x + 4}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x - 4)}{(x - 1)(x + 3)}$$
$$= \lim_{x \to 1} \frac{x^2 + x - 4}{x + 3}$$
$$= \frac{1^2 + 1 - 4}{1 + 3} = -\frac{1}{2}.$$

Example 12 Let $f : \mathbf{R} \setminus \{1\} \to \mathbf{R}$ defined by $f(x) = \frac{\sqrt{x}-1}{x-1}$. Find $\lim_{x \to 1} f(x)$. For $x \neq 1$.

$$\frac{\sqrt{x}-1}{x-1} = \frac{\sqrt{x}-1}{x-1}\frac{\sqrt{x}+1}{\sqrt{x}+1} = \frac{x-1}{(x-1)(\sqrt{x}+1)} = \frac{1}{\sqrt{x}+1}.$$

Hence

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} = \frac{1}{\sqrt{x} + 1} = \frac{1}{2}.$$

Challenge Question Let $f : \mathbf{R} \setminus \{1\} \to \mathbf{R}$ defined by $f(x) = \frac{\sqrt[3]{x-1}}{x-1}$. Find $\lim_{x \to 1} f(x)$. Hint: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.

4 Limit at infinity

Definition 7 If the values of the function f(x) approach the number L as x gets bigger and bigger (i.e. as x goes to $+\infty$). Then L is called the limit of f(x) as x tends to ∞ . Denoted by

$$\lim_{x \to +\infty} f(x) = L$$

Similarly we can define

$$\lim_{x \to -\infty} f(x) = M.$$

Warning: The value L and M may not be the same. If they are the same (i.e., L = M), we write

$$\lim_{x \to \infty} f(x) = L.$$

Example 13 Let $f(x) = \frac{1}{x}$.

-0.001 -0.01 -0.1 -1 1 0.1 0.01 0.001	-1000	-100	-10	-1	L	10	100	1000
	-0.001	-0.01	-0.1	-1	1	0.1	0.01	0.001

$$\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = 0$$

Proposition 8 If A and k are constants with k > 0. Then

$$\lim_{x \to +\infty} \frac{A}{x^k} = 0 \text{ and } \lim_{x \to -\infty} \frac{A}{x^k} = 0.$$

Proposition 9 If $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to +\infty} g(x)$ exist, then

1.
$$\lim_{x \to +\infty} (f(x) + g(x)) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x)$$

2.
$$\lim_{x \to +\infty} (f(x) - g(x)) = \lim_{x \to +\infty} f(x) - \lim_{x \to +\infty} g(x)$$

3.
$$\lim_{x \to +\infty} (f(x)g(x)) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x)$$

3.
$$\lim_{x \to +\infty} (f(x)g(x)) = \lim_{x \to +\infty} f(x) \cdot \lim_{x \to +\infty} g(x)$$

4.
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to +\infty} f(x)}{\lim_{x \to +\infty} g(x)} \text{ if } \lim_{x \to +\infty} g(x) \neq 0.$$

 $Replacing \lim_{x \to +\infty} by \lim_{x \to -\infty} or \lim_{x \to \infty}, we \ can \ obtain \ similar \ results.$

Example 14 Find $\lim_{x \to +\infty} \frac{3x^2}{x^2 + x + 1}$

$$\lim_{x \to +\infty} \frac{3x^2}{x^2 + x + 1}$$

Divide both the denominator and numerator by x^2 .

$$= \lim_{x \to +\infty} \frac{3}{1 + \frac{1}{x} + \frac{1}{x^2}}$$
$$= \frac{3}{1 + 0 + 0} = 3.$$

Question: Can we write

$$\lim_{x \to +\infty} \frac{3x^2}{x^2 + x + 1} = \frac{\lim_{x \to +\infty} 3x^2}{\lim_{x \to +\infty} x^2 + x + 1}$$

?

Example 15 Find $\lim_{x \to +\infty} \frac{x-1}{2x^2+3x+1}$

$$\lim_{x \to +\infty} \frac{x-1}{2x^2+3x+1} = \lim_{x \to +\infty} \frac{\frac{1}{x} - \frac{1}{x^2}}{2+3\frac{1}{x} + \frac{1}{x^2}} = \frac{0}{2+0+0} = 0.$$

Method: Procedure for evaluating $\lim_{x\to\infty} \frac{p(x)}{q(x)}$:

Step 1: Find the highest power x^k of q(x). **Step 2**: Divide the numerator and the denominator by x^k . **Step 3** Find the limit of the numerator and the denominator.

5 Infinite Limit

Definition 10 We say that $\lim_{x\to c} f(x)$ is an infinite limit if f(x) increases or decreases without bound as $x \to c$.

If f(x) increases without bound as $x \to c$, we write

$$\lim_{x \to c} f(x) = +\infty.$$

If f(x) decreases without bound as $x \to c$, then

$$\lim_{x \to c} f(x) = -\infty.$$

Example 16 Find $\lim_{x \to +\infty} \frac{x^3 - 1}{2x^2 + 3x + 1}$.

$$\lim_{x \to +\infty} \frac{x^3 - 1}{2x^2 + 3x + 1}$$

Divide the numerator and the denominator by x^2

$$= \lim_{x \to +\infty} \frac{x - \frac{1}{x^2}}{2 + \frac{3}{x} + \frac{1}{x^2}} \\ = +\infty.$$

(The last step is not too rigorous).

Proposition 11 Suppose

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0, a_n \neq 0$$
$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0, b_m \neq 0$$

Then

$$\lim_{x \to +\infty} \frac{p(x)}{q(x)} = \begin{cases} \frac{a_n}{b_m} & \text{if } n = m, \\ 0 & \text{if } n < m, \\ +\infty & \text{if } a_n b_m > 0, \\ -\infty & \text{if } a_n b_m < 0. \end{cases}$$

(Do you know how to prove it? How about $\lim_{x \to -\infty}$?)

Example 17 Find $\frac{3x^3 - 2x^2 + 1}{-x^3 + 7}$. **Answer**: By the proposition, the answer is $\frac{3}{-1} = -3$.

Similar technique can be used for functions with radical (i.e., something like \sqrt{x}).

Example 18 Find $\lim_{x\to\infty} \frac{3x-1}{\sqrt{3x^2+1}}$.

The term with highest degree of the denominator is x^2 . But we need to take square root. So we divide the nominator and the denominator by $\sqrt{x^2} = x$. We have

$$\lim_{x \to \infty} \frac{3x - 1}{\sqrt{3x^2 + 1}} = \lim_{x \to \infty} \frac{\frac{1}{x}(3x - 1)}{\frac{1}{x}\sqrt{3x^2 + 1}}$$
$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x}}{\sqrt{3 + \frac{1}{x^2}}} = \frac{3}{\sqrt{3}} = \sqrt{3}.$$

6 The Sandwich theorem (The Sequence Theorem)

Theorem 12 (The sandwich theorem or the Squeeze theorem) Suppose $g(x) \le f(x) \le h(x)$ for all x close to c, except possibly at the value x = a. If

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$$

Then

$$\lim_{x \to c} f(x) = L$$

Theorem 13 (The sandwich theorem or the Squeeze theorem) Suppose $g(x) \le f(x) \le h(x)$ for all x sufficiently large. If

$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} h(x) = L$$

Then

$$\lim_{x \to \infty} f(x) = L$$

There are other variants of the squeeze theorem, for example, we can replace $\lim_{x\to c}$ by $\lim_{x\to c^+}$, $\lim_{x\to c^-}$ or $\lim_{x\to -\infty}$

Example 19 compute $\lim_{x\to 0} x \sin \frac{1}{x}$. **Answer** Because $\left|\sin \frac{1}{x}\right| \leq 1$,

$$-|x| \le x \sin \frac{1}{x} \le |x|.$$

Let g(x) = -|x| and h(x) = |x|. Then

$$\lim_{x\to 0}g(x)=\lim_{x\to 0}h(x)=0$$

Hence by the squeeze theorem,

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0.$$

Example 20 Compute $\lim_{x\to\infty} \frac{x+\cos x}{2x+1}$. **Answer** Because $-1 \le \cos x \le 1$, for $x \ge 0$

$$\frac{x-1}{2x+1} \le \frac{x+\cos x}{2x+1} \le \frac{x+1}{2x+1}.$$

Let $g(x) = \frac{x-1}{2x+1}$ and $h(x) = \frac{x+1}{2x+1}$.

$$\lim_{x \to \infty} g(x) = \frac{1}{2} \text{ and } \lim_{x \to \infty} h(x) = \frac{1}{2}.$$

By the squeeze theorem

$$\lim_{x \to \infty} \frac{x + \cos x}{2x + 1} = \frac{1}{2}.$$

Proposition 14 $\lim_{x \to c} f(x) = 0 \iff \lim_{x \to c} |f(x)| = 0$

 $\begin{array}{l} \textit{Proof.} \ (\Longrightarrow) \ \text{In Proposition 6} \ , \text{take } g(x) = |x|, \ L = 0 \ \text{and} \ M = 0. \\ (\Leftarrow) \ \text{Because} \ -|f(x)| \leq f(x) \leq |f(x)| \ \text{and} \ \lim_{x \to c} (-|f(x)|) = 0 \ \text{and} \ \lim_{x \to c} |f(x)| = 0 \ \text{by the} \\ \text{sandwich theorem} \ \lim_{x \to c} f(x) = 0. \end{array}$

Similarly we have

Proposition 15 $\lim_{x \to \infty} f(x) = 0 \iff \lim_{x \to \infty} |f(x)| = 0$