2018 MATH1010 Lecture 3: Limit Charles Li

The lecture note was used during 2016-17 Term 1. It is for reference only. It may contain typos. Read at your own risk.

1 Limit of a function

Definition 1 If $f(x)$ gets closer and closer to a number L as x gets closer and closer to c from both sides, then L is the limit of x as x approaches c . Denoted by

$$
\lim_{x \to c} f(x) = L.
$$

Example 1 $f(x) = x + 1$, find $\lim_{x \to 1} f(x)$

When x approaches 1 from both sides, $f(x)$ approaches 2. Therefore $\lim_{x\to 1} f(x) = 2$.

Remark: 1. The table only gives you an intuitive idea, this is not a rigorous proof. 2. **Don't** think that the limit is always obtained by substituting $x = 1$ into $f(x)$.

Example 2 $f(x) = \begin{cases} x+1 & \text{if } x \neq 1, \\ \text{undefined} & \text{if } x = 1. \end{cases}$							
				$x \mid 0.9 \mid 0.99 \mid 0.999 \mid 1 \mid 1.001 \mid 1.01 \mid 1.1$			
				$f(x)$ 1.9 1.99 1.999 undefined 2.001 2.01 2.1			
				When x approaches 1 from both sides, $f(x)$ approaches 2. Therefore $\lim_{x\to 1} f(x) = 2$.			

Disregard the value of f at 1, the limit of $f(x)$ when x tends to 1 is always 2.

Example 3 $f(x) = \begin{cases} x+1 & \text{if } x \neq 1, \\ 1 & \text{if } x = 1. \end{cases}$ 10 if $x = 1$. $x \mid 0.9 \mid 0.99 \mid 0.999 \mid 1 \mid 1.001 \mid 1.01 \mid 1.1$ $f(x)$ | 1.9 | 1.99 | 1.999 | 10 | 2.001 | 2.01 | 2.1

When x approaches 1 from both sides, $f(x)$ approaches 2. Therefore $\lim_{x\to 1} f(x) = 2$.

The limit depends only on the value closed to $x = 1$, but does not depend on the value at $x = 1$.

Example 4

Define $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ by $f(x) = \frac{1}{x^2}$.

When x approaches 0, $f(x)$ tends to $+\infty$ (not a real number). So $\lim_{x\to 0} f(x)$ does not exist. But we still write $\lim_{x\to 0} f(x) = +\infty$.

2 Left hand limit and right hand limit

Definition 2 If $f(x)$ approaches L as x tends towards c from the left $(x < c)$, we write $\lim_{x \to c^-} f(x) = L$. It is called the **left hand limit** of $f(x)$ at c. If $f(x)$ approaches L as x tends towards c from the right $(x > c)$, we write $x \rightarrow c^+ f(x) = L$. It is called the **right hand limit** of $f(x)$ at c.

Example 5 Recall

$$
|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}
$$

$$
\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0.
$$

$$
\lim_{x \to 0^-} |x| = \lim_{x \to 0^-} (-x) = 0.
$$

For this case $\lim_{x\to 0^+} |x| = \lim_{x\to 0^+} |x|$. Then $\lim_{x\to 0} |x| = 0$ by the following proposition.

Proposition 3 $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c^-} f(x) = L$ and $\lim_{x \to c^+} f(x) = L$. (i.e., both left hand limit and right hand limit exist and is equal to L)

Example 6 Define $f : \mathbf{R} \to \mathbf{R}$,

$$
f(x) = \begin{cases} x+1 & \text{if } x \ge 0, \\ x^2 & \text{if } x < 0. \end{cases}
$$

and

$$
\lim_{x \leftarrow 0^-} f(x) = 0.
$$

Remark: The left hand limit or the right hand limit may not be the same. Challenge question (you can do this if you are bored during the lecture. I will buy you a drink if you are the first one to give me a complete/reasonable solution.) For $x \geq 0$, define

$$
f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q}, p, q \text{ are integers and coprime.} \\ 0 & \text{otherwise.} \end{cases}
$$

e.g. $f($ √ $\overline{2}) = 0, f(\frac{3}{5})$ $(\frac{3}{5}) = \frac{1}{5}$. Show that

$$
\lim_{x \to 0^+} f(x) = 0.
$$

3 Properties

Proposition 4

1. If k is a constant, then $\lim_{x \to c} k = k$.

$$
2. \lim_{x \to c} x = c.
$$

Proposition 5 If $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ exist, then

1. $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$ 2. $\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$ 3. $\lim_{x \to c} (f(x)g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$ $f(r)$ $\lim f(r)$

4.
$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\min_{x \to c} f(x)}{\lim_{x \to c} g(x)} \text{ if } \lim_{x \to c} g(x) \neq 0.
$$

Replacing $\lim_{x\to c}$ by $\lim_{x\to c^-}$ or $\lim_{x\to c^+}$, we can obtain similar result. $x \rightarrow c^$ $x \rightarrow c^+$

Proposition 6 If $\lim_{x \to c} f(x) = L$ and $\lim_{x \to L} g(x) = M$. then $\lim_{x\to c} g(f(x)) = M.$

Example 7 Find $\lim_{x\to 2} (3x^2 - 2)$. Slow motion! Too much details Step 1 $\lim_{x \to 2} x = 2$. so $\lim_{x \to 2} x^2 = \lim_{x \to 2} (x \cdot x) = \lim_{x \to 2} x \cdot \lim_{x \to 2} x = 2 \cdot 2 = 4$. Step 2 $\lim_{x\to 2} 3 = 3$, $\lim_{x\to 2} x^2 = 4$. So $\lim_{x\to 2} 3x^2 = \lim_{x\to 2} 3 \cdot \lim_{x\to 2} x^2 = 3 \cdot 4 = 12$. Step 3 $\lim_{x\to 2} 3x^2 = 12$, $\lim_{x\to 2} 2 = 2$. $\lim_{x\to 2} (3x^2 - 2) = \lim_{x\to 2} 3x^2 - \lim_{x\to 2} 2 = 12 - 2 = 10$. Shorter answer. Faster! $\lim_{x \to 2} (3x^2 - 2) = 3(\lim_{x \to 2} x)^2 - 2 = 12 - 2 = 10.$ Example 8 Find $\lim_{x \to -1}$ $4x^2 - 3$ $2x - 1$.

Answer

$$
\lim_{x \to -1} \frac{4x^2 - 3}{2x - 1} = \frac{4(\lim_{x \to -1} x)^2 - 3}{2 \lim_{x \to -1} x - 1} = \frac{4 \cdot 1 - 3}{2(-1) - 1} = -\frac{1}{3}.
$$

Example 9 Define $f : \mathbf{R} \to \mathbf{R}$,

$$
f(x) = \begin{cases} x+1 & \text{if } x \ge 0, \\ x^2 & \text{if } x < 0. \end{cases}
$$

Compute $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$. Answer:

$$
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + 1) = 1.
$$

$$
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 = 0.
$$

What's wrong about the following calculation?

$$
\lim_{x \to 0} x \frac{1}{x^2} = \lim_{x \to 0} x \lim_{x \to 0} \frac{1}{x^2} = 0 \lim_{x \to 0} \frac{1}{x^2} = 0.
$$

So $\lim_{x\to 0}$ 1 \ddot{x} $= 0.$

Why it is wrong?: because we have to assume the existence of all the involved limit.

Example 10 Find $\lim_{x\to 1} \frac{x}{x^2 - 3x + 2}$. x^2-1 We can't directly use property of division of limit because the denominator $\lim_{x\to 1}(x^2 - 3x + 2) = 1^2 - 3 \times 1 + 2 = 0.$

$$
\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)}.
$$

Cancel out the common factor. The cancellation only affect the value of the function at $x = 1$. The value of the function at other places remains the same. So the limit remains unchanged. The above

$$
= \lim_{x \to 1} \frac{x+1}{x-2} = \frac{1+1}{1-2} = -2.
$$

Technique Generally to find

$$
\lim_{x \to c} \frac{p(x)}{q(x)}
$$

where $p(x)$, $q(x)$ are polynomial. We have

- (1) If $q(c) \neq 0$, then the answer is $\frac{p(c)}{q(c)}$.
- (2) If $q(c) = 0$. Then
	- (a) If $p(c) \neq 0$, then the limit does not exists.
	- (b) If $p(c) = 0$, then we need to factorize $p(x)$ and $q(x)$. It is know that $x c$ is a factor for both $p(x)$ and $q(x)$. So we can write $p(x) = (x - c)p_1(x)$ and $q(x) = (x - c)q_1(x)$. Then we have

$$
\lim_{x \to c} \frac{p(x)}{q(x)} = \lim_{x \to c} \frac{p_1(x)}{q_1(x)}.
$$

Example 11 Compute

$$
\lim_{x \to 1} \frac{x^3 - 5x + 4}{x^2 + 2x - 3}.
$$

Answer Write $p(x) = x^3 - 5x + 4$ and $q(x) = x^2 + 2x - 3$. Because $p(1) = q(1) = 0$, $x - 1$ is a factor of $p(x)$ and $q(x)$. We obtain

$$
p(x) = (x - 1)(x2 + x - 4)
$$
 and $q(x) = (x - 1)(x + 3)$.

Then

$$
\lim_{x \to 1} \frac{x^3 - 5x + 4}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x - 4)}{(x - 1)(x + 3)}
$$

$$
= \lim_{x \to 1} \frac{x^2 + x - 4}{x + 3}
$$

$$
= \frac{1^2 + 1 - 4}{1 + 3} = -\frac{1}{2}.
$$

Example 12 Let $f : \mathbf{R} \backslash \{1\} \to \mathbf{R}$ defined by $f(x) =$ $\sqrt{x-1}$ $\frac{x-1}{x-1}$. Find $\lim_{x\to 1} f(x)$. For $x \neq 1$. √ √ √

$$
\frac{\sqrt{x}-1}{x-1} = \frac{\sqrt{x}-1}{x-1} \frac{\sqrt{x}+1}{\sqrt{x}+1} = \frac{x-1}{(x-1)(\sqrt{x}+1)} = \frac{1}{\sqrt{x}+1}.
$$

Hence

$$
\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}.
$$

Challenge Question Let $f: \mathbf{R} \setminus \{1\} \to \mathbf{R}$ defined by $f(x) = \frac{\sqrt[3]{x}-1}{x-1}$ $\frac{\gamma x-1}{x-1}$. Find $\lim_{x\to 1} f(x)$. Hint: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.

4 Limit at infinity

Definition 7 If the values of the function $f(x)$ approach the number L as x gets bigger and bigger (i.e. as x goes to $+\infty$). Then L is called the limit of $f(x)$ as x tends to ∞ . Denoted by

$$
\lim_{x \to +\infty} f(x) = L.
$$

Similarly we can define

$$
\lim_{x \to -\infty} f(x) = M.
$$

Warning: The value L and M may not be the same. If they are the same (i.e., $L = M$), we write

$$
\lim_{x \to \infty} f(x) = L.
$$

$$
\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = 0.
$$

Proposition 8 If A and k are constants with $k > 0$. Then

$$
\lim_{x \to +\infty} \frac{A}{x^k} = 0 \text{ and } \lim_{x \to -\infty} \frac{A}{x^k} = 0.
$$

Proposition 9 If $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to +\infty} g(x)$ exist, then

1.
$$
\lim_{x \to +\infty} (f(x) + g(x)) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x)
$$

\n2.
$$
\lim_{x \to +\infty} (f(x) - g(x)) = \lim_{x \to +\infty} f(x) - \lim_{x \to +\infty} g(x)
$$

3.
$$
\lim_{x \to +\infty} (f(x)g(x)) = \lim_{x \to +\infty} f(x) \cdot \lim_{x \to +\infty} g(x)
$$

4.
$$
\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to +\infty} f(x)}{\lim_{x \to +\infty} g(x)} \text{ if } \lim_{x \to +\infty} g(x) \neq 0.
$$

Replacing $\lim_{x \to +\infty} by \lim_{x \to -\infty} or \lim_{x \to \infty}$, we can obtain similar results.

Example 14 Find $\lim_{x \to +\infty}$ $3x^2$ $x^2 + x + 1$

$$
\lim_{x \to +\infty} \frac{3x^2}{x^2 + x + 1}
$$

Divide both the denominator and numerator by x^2 .

$$
= \lim_{x \to +\infty} \frac{3}{1 + \frac{1}{x} + \frac{1}{x^2}}
$$

$$
= \frac{3}{1 + 0 + 0} = 3.
$$

Question: Can we write

$$
\lim_{x \to +\infty} \frac{3x^2}{x^2 + x + 1} = \frac{\lim_{x \to +\infty} 3x^2}{\lim_{x \to +\infty} x^2 + x + 1}
$$

?

Example 15 Find $\lim_{x \to +\infty}$ $x - 1$ $2x^2 + 3x + 1$

$$
\lim_{x \to +\infty} \frac{x-1}{2x^2 + 3x + 1}
$$

=
$$
\lim_{x \to +\infty} \frac{\frac{1}{x} - \frac{1}{x^2}}{2 + 3\frac{1}{x} + \frac{1}{x^2}}
$$

=
$$
\frac{0}{2 + 0 + 0} = 0.
$$

Method: Procedure for evaluating $\lim_{x\to\infty}$ $q(x)$: **Step 1**: Find the highest power x^k of $q(x)$.

Step 2: Divide the numerator and the denominator by x^k . Step 3 Find the limit of the numerator and the denominator.

5 Infinite Limit

Definition 10 We say that $\lim_{x\to c} f(x)$ is an infinite limit if $f(x)$ increases or decreases without bound as $x \to c$. If $f(x)$ increases without bound as $x \to c$, we write

$$
\lim_{x \to c} f(x) = +\infty.
$$

If $f(x)$ decreases without bound as $x \to c$, then

$$
\lim_{x \to c} f(x) = -\infty.
$$

Example 16 Find $\lim_{x \to +\infty}$ x^3-1 $\frac{x}{2x^2+3x+1}$.

$$
\lim_{x \to +\infty} \frac{x^3 - 1}{2x^2 + 3x + 1}
$$

Divide the numerator and the denominator by x^2

$$
= \lim_{x \to +\infty} \frac{x - \frac{1}{x^2}}{2 + \frac{3}{x} + \frac{1}{x^2}}
$$

$$
= +\infty.
$$

(The last step is not too rigorous).

Proposition 11 Suppose

$$
p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0, a_n \neq 0
$$

$$
q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0, b_m \neq 0
$$

Then

$$
\lim_{x \to +\infty} \frac{p(x)}{q(x)} = \begin{cases} \frac{a_n}{b_m} & \text{if } n = m, \\ 0 & \text{if } n < m, \\ +\infty & \text{if } a_n b_m > 0, \\ -\infty & \text{if } a_n b_m < 0. \end{cases}
$$

(Do you know how to prove it? How about $\lim_{x \to -\infty}$?)

Example 17 Find $\frac{3x^3 - 2x^2 + 1}{x^3 + 7}$ $\frac{2x+1}{-x^3+7}$. **Answer**: By the proposition, the answer is $\frac{3}{-1} = -3$.

Similar technique can be used for functions with radical (i.e., something like \sqrt{x} **).**

Example 18 Find $\lim_{x\to\infty}$ $\frac{3x-1}{\sqrt{2x}}$ $3x^2+1$.

The term with highest degree of the denominator is x^2 . But we need to take square The term with highest degree of the denominator is x^2 . But we need to ta root. So we divide the nominator and the denominator by $\sqrt{x^2} = x$. We have

$$
\lim_{x \to \infty} \frac{3x - 1}{\sqrt{3x^2 + 1}} = \lim_{x \to \infty} \frac{\frac{1}{x}(3x - 1)}{\frac{1}{x}\sqrt{3x^2 + 1}}
$$

$$
= \lim_{x \to \infty} \frac{3 - \frac{1}{x}}{\sqrt{3 + \frac{1}{x^2}}} = \frac{3}{\sqrt{3}} = \sqrt{3}.
$$

6 The Sandwich theorem (The Sequence Theorem)

Theorem 12 (The sandwich theorem or the Squeeze theorem) Suppose $g(x) \leq$ $f(x) \leq h(x)$ for all x close to c, except possibly at the value $x = a$. If

$$
\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L
$$

Then

$$
\lim_{x \to c} f(x) = L.
$$

Theorem 13 (The sandwich theorem or the Squeeze theorem) Suppose $g(x) \leq$ $f(x) \leq h(x)$ for all x sufficiently large. If

$$
\lim_{x \to \infty} g(x) = \lim_{x \to \infty} h(x) = L
$$

Then

$$
\lim_{x \to \infty} f(x) = L.
$$

There are other variants of the squeeze theorem, for example, we can replace $\lim_{x\to c}$ by $\lim_{x \to c^+}$, $\lim_{x \to c^-}$ or $\lim_{x \to -\infty}$

Example 19 compute $\lim_{x\to 0} x \sin x$ 1 \overline{x} . Answer Because $\left|\sin\frac{1}{x}\right| \leq 1$,

$$
-|x| \le x \sin \frac{1}{x} \le |x|.
$$

Let $g(x) = -|x|$ and $h(x) = |x|$. Then

$$
\lim_{x \to 0} g(x) = \lim_{x \to 0} h(x) = 0.
$$

Hence by the squeeze theorem,

$$
\lim_{x \to 0} x \sin \frac{1}{x} = 0.
$$

Example 20 Compute $\lim_{x\to\infty}$ $x + \cos x$ $2x + 1$. Answer Because $-1 \le \cos x \le 1$, for $x \ge 0$

$$
\frac{x-1}{2x+1} \le \frac{x + \cos x}{2x+1} \le \frac{x+1}{2x+1}.
$$

Let $g(x) = \frac{x-1}{2x+1}$ and $h(x) = \frac{x+1}{2x+1}$.

$$
\lim_{x \to \infty} g(x) = \frac{1}{2}
$$
 and
$$
\lim_{x \to \infty} h(x) = \frac{1}{2}
$$
.

By the squeeze theorem

$$
\lim_{x \to \infty} \frac{x + \cos x}{2x + 1} = \frac{1}{2}.
$$

Proposition 14 $\lim_{x \to c} f(x) = 0 \iff \lim_{x \to c} |f(x)| = 0$

Proof. (\Longrightarrow) In Proposition 6, take $g(x) = |x|, L = 0$ and $M = 0$. ((\Leftarrow) Because $-|f(x)| \le f(x) \le |f(x)|$ and $\lim_{x \to c} (-|f(x)|) = 0$ and $\lim_{x \to c} |f(x)| = 0$ by the sandwich theorem $\lim_{x\to c} f(x) = 0$.

Similarly we have

Proposition 15 $\lim_{x \to \infty} f(x) = 0 \iff \lim_{x \to \infty} |f(x)| = 0$