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Lecture 23: Trigonometric substitution

Charles Li

1 More Integrals involving trigonometric func-
tions

Example 1.1. Evaluate

∫
tanx dx. �

Answer. Rewrite tan x as sinx/ cosx. While the presence of a
composition of functions may not be immediately obvious, recognize
that cosx is “inside” the 1/x function. Therefore, we see if setting
u = cos x returns usable results. We have that du = − sinx dx,
hence −du = sinx dx. We can integrate:∫

tanx dx =

∫
sinx

cosx
dx

=

∫
1

cosx︸︷︷︸
u

sinx dx︸ ︷︷ ︸
−du

=

∫ −1

u
du

= − ln |u|+ C

= − ln | cosx|+ C.

Some texts prefer to bring the −1 inside the logarithm as a power
of cos x, as in:

− ln | cosx|+ C = ln |(cosx)−1|+ C

= ln

∣∣∣∣ 1

cosx

∣∣∣∣+ C

= ln | secx|+ C.

Thus the result they give is
∫

tanx dx = ln | secx| + C. These two
answers are equivalent.

Example 1.2. Evaluate

∫
secx dx. �
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Answer. ∫
secx dx =

∫
secx · secx+ tanx

secx+ tanx
dx

=

∫
sec2 x+ secx tanx

secx+ tanx
dx.

Now let u = secx+ tanx; this means du = (secx tanx+ sec2 x) dx,
which is our numerator. Thus:

=

∫
du

u

= ln |u|+ C

= ln | secx+ tanx|+ C.

We can use similar techniques to those used in Examples 1.1 and
1.2 to find antiderivatives of cotx and csc x (which the reader can
explore in the exercises.) We summarize our results here.

Theorem 1.1. Antiderivatives of Trigonometric Functions

1.

∫
sinx dx = − cosx+ C

2.

∫
cosx dx = sinx+ C

3.

∫
tanx dx = − ln | cosx| +

C

4.

∫
cscx dx = − ln | cscx +

cotx|+ C

5.

∫
secx dx = ln | secx +

tanx|+ C

6.

∫
cotx dx = ln | sinx|+ C

�

2 Substitution and Inverse Trigonometric Func-
tions

When studying derivatives of inverse functions, we learned that

d

dx

(
tan−1 x

)
=

1

1 + x2
.
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Applying the Chain Rule to this is not difficult; for instance,

d

dx

(
tan−1 5x

)
=

5

1 + 25x2
.

We now explore how Substitution can be used to “undo” certain
derivatives that are the result of the Chain Rule applied to Inverse
Trigonometric functions. We begin with an example.

Example 2.1. Evaluate

∫
1

25 + x2
dx. �

Answer. The integrand looks similar to the derivative of the arct-
angent function. Note:

1

25 + x2
=

1

25(1 + x2

25
)

=
1

25(1 +
(
x
5

)2
)

=
1

25

1

1 +
(
x
5

)2 .
Thus ∫

1

25 + x2
dx =

1

25

∫
1

1 +
(
x
5

)2 dx.
This can be integrated using Substitution. Set u = x/5, hence
du = dx/5 or dx = 5du. Thus∫

1

25 + x2
dx =

1

25

∫
1

1 +
(
x
5

)2 dx
=

1

5

∫
1

1 + u2
du

=
1

5
tan−1 u+ C

=
1

5
tan−1

(x
5

)
+ C

Theorem 2.1. Integrals Involving Inverse Trigonometric Func-
tions
Let a > 0.
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1.

∫
1

a2 + x2
dx =

1

a
tan−1

(x
a

)
+ C

2.

∫
1√

a2 − x2
dx = sin−1

(x
a

)
+ C

3.

∫
1

x
√
x2 − a2

dx =
1

a
sec−1

( |x|
a

)
+ C

�

Example 2.2. Evaluate the given indefinite integrals.∫
1

9 + x2
dx,

∫
1

x
√
x2 − 1

100

dx and

∫
1√

5− x2
dx.

�

Answer. Each can be answered using a straightforward application
of Theorem 2.1.∫

1

9 + x2
dx =

1

3
tan−1 x

3
+ C, as a = 3.∫

1

x
√
x2 − 1

100

dx = 10 sec−1 10x+ C, as a = 1
10

.

∫
1√

5− x2
= sin−1 x√

5
+ C, as a =

√
5.

Example 2.3. Evaluate

∫
1

x2 − 4x+ 13
dx. �

Answer. We see this by completing the square in the denominator.
We give a brief reminder of the process here.

Start with a quadratic with a leading coefficient of 1. It will have
the form of x2 + bx+ c. Take 1/2 of b, square it, and add/subtract
it back into the expression. I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b
2

4
+ c

=

(
x+

b

2

)2

+ c− b2

4
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In our example, we take half of −4 and square it, getting 4. We
add/subtract it into the denominator as follows:

1

x2 − 4x+ 13
=

1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4 + 13

=
1

(x− 2)2 + 9

We can now integrate this using the arctangent rule by substituting
u = x− 2. Thus we have∫

1

x2 − 4x+ 13
dx =

∫
1

(x− 2)2 + 9
dx =

1

3
tan−1 x− 2

3
+ C.

Example 2.4. Evaluate

∫
4− x√
16− x2

dx. �

Answer. This integral requires two different methods to evaluate
it. We get to those methods by splitting up the integral:∫

4− x√
16− x2

dx =

∫
4√

16− x2
dx−

∫
x√

16− x2
dx.

The first integral is handled using a straightforward application of
Theorem 2.1; the second integral is handled by substitution, with
u = 16− x2. We handle each separately.∫

4√
16− x2

dx = 4 sin−1 x

4
+ C.∫

x√
16− x2

dx: Set u = 16 − x2, so du = −2xdx and xdx =

−du/2. We have∫
x√

16− x2
dx =

∫ −du/2√
u

= −1

2

∫
1√
u
du

= −√u+ C

= −
√

16− x2 + C.
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Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x

4
+
√

16− x2 + C.

3 Trigonometric substitution

Example 3.1. Evaluate

∫ 3

−3

√
9− x2 dx. �

Answer. We begin by noting that 9 sin2 θ+ 9 cos2 θ = 9, and hence
9 cos2 θ = 9−9 sin2 θ. If we let x = 3 sin θ, then 9−x2 = 9−9 sin2 θ =
9 cos2 θ.

Setting x = 3 sin θ gives dx = 3 cos θ dθ. We are almost ready
to substitute. We also wish to change our bounds of integration.
The bound x = −3 corresponds to θ = −π/2 (for when θ = −π/2,
x = 3 sin θ = −3). Likewise, the bound of x = 3 is replaced by the
bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2 θ(3 cos θ) dθ

=

∫ π/2

−π/2
3
√

9 cos2 θ cos θ dθ

=

∫ π/2

−π/2
3|3 cos θ| cos θ dθ.

On [−π/2, π/2], cos θ is always positive, so we can drop the absolute
value bars, then employ a power–reducing formula:

=

∫ π/2

−π/2
9 cos2 θ dθ

=

∫ π/2

−π/2

9

2

(
1 + cos(2θ)

)
dθ

=
9

2

(
θ +

1

2
sin(2θ)

)∣∣∣∣∣
π/2

−π/2

=
9

2
π.
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We now describe in detail Trigonometric Substitution. This method
excels when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2

and
√
x2 + a2. The following Key Idea outlines the procedure for

each case, followed by more examples. Each right triangle acts as a
reference to help us understand the relationships between x and θ.

Key idea Trigonometric Substitution

(a) For integrands containing
√
a2 − x2

Let x = a sin θ, dx = a cos θ dθ
Thus θ = sin−1(x/a), for −π/2 ≤ θ ≤ π/2.
On this interval, cos θ ≥ 0, so√
a2 − x2 = a cos θ

.. √
a2 − x2

.

x

.

a

. θ

(b) For integrands containing
√
x2 + a2:

Let x = a tan θ, dx = a sec2 θ dθ
Thus θ = tan−1(x/a), for −π/2 < θ < π/2.
On this interval, sec θ > 0, so√
x2 + a2 = a sec θ

..
a

.

x

.

√ x2 +
a2

. θ

(c) For integrands containing
√
x2 − a2:

Let x = a sec θ, dx = a sec θ tan θ dθ
Thus θ = sec−1(x/a). If x/a ≥ 1, then 0 ≤ θ < π/2; if
x/a ≤ −1, then π/2 < θ ≤ π.
We restrict our work to where x ≥ a, so x/a ≥ 1, and 0 ≤ θ <
π/2. On this interval, tan θ ≥ 0, so√
x2 − a2 = a tan θ
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..
a

.

√
x2 − a2

.

x

. θ

Example 3.2. Evaluate

∫
1√

5 + x2
dx. �

Answer. Using Key Idea (b), we recognize a =
√

5 and set x =√
5 tan θ. This makes dx =

√
5 sec2 θ dθ. We will use the fact that√

5 + x2 =
√

5 + 5 tan2 θ =
√

5 sec2 θ =
√

5 sec θ. Substituting, we
have: ∫

1√
5 + x2

dx =

∫
1√

5 + 5 tan2 θ

√
5 sec2 θ dθ

=

∫ √
5 sec2 θ√
5 sec θ

dθ

=

∫
sec θ dθ

= ln
∣∣ sec θ + tan θ

∣∣+ C.

While the integration steps are over, we are not yet done. The
original problem was stated in terms of x, whereas our answer is
given in terms of θ. We must convert back to x.

The reference triangle given in Key Idea (b) helps. With x =√
5 tan θ, we have

tan θ =
x√
5

and sec θ =

√
x2 + 5√

5
.

This gives ∫
1√

5 + x2
dx = ln

∣∣ sec θ + tan θ
∣∣+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic identity
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to simplify it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln

∣∣∣∣ 1√
5

(√
x2 + 5 + x

)∣∣∣∣+ C

= ln

∣∣∣∣ 1√
5

∣∣∣∣+ ln
∣∣√x2 + 5 + x

∣∣+ C

= ln
∣∣√x2 + 5 + x

∣∣+ C,

where the ln
(
1/
√

5
)

term is absorbed into the constant C.

Example 3.3. Evaluate

∫ √
4x2 − 1 dx. �

Answer. We start by rewriting the integrand so that it looks like√
x2 − a2 for some value of a:

√
4x2 − 1 =

√
4

(
x2 − 1

4

)

= 2

√
x2 −

(
1

2

)2

.

So we have a = 1/2, and following Key Idea (c), we set x = 1
2

sec θ,

and hence dx = 1
2

sec θ tan θ dθ. We now rewrite the integral with
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these substitutions:∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1

2

)2

dx

=

∫
2

√
1

4
sec2 θ − 1

4

(
1

2
sec θ tan θ

)
dθ

=

∫ √
1

4
(sec2 θ − 1)

(
sec θ tan θ

)
dθ

=

∫ √
1

4
tan2 θ

(
sec θ tan θ

)
dθ

=

∫
1

2
tan2 θ sec θ dθ

=
1

2

∫ (
sec2 θ − 1

)
sec θ dθ

=
1

2

∫ (
sec3 θ − sec θ

)
dθ.

We integrated sec3 θ in last lecture notes, finding its antiderivatives
to be ∫

sec3 θ dθ =
1

2

(
sec θ tan θ + ln | sec θ + tan θ|

)
+ C.

Thus∫ √
4x2 − 1 dx =

1

2

∫ (
sec3 θ − sec θ

)
dθ

=
1

2

(
1

2

(
sec θ tan θ + ln | sec θ + tan θ|

)
− ln | sec θ + tan θ|

)
+ C

=
1

4
(sec θ tan θ − ln | sec θ + tan θ|) + C.

We are not yet done. Our original integral is given in terms of x,
whereas our final answer, as given, is in terms of θ. We need to
rewrite our answer in terms of x. With a = 1/2, and x = 1

2
sec θ,

the reference triangle in Key Idea (c) shows that

tan θ =
√
x2 − 1/4

/
(1/2) = 2

√
x2 − 1/4 and sec θ = 2x.
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Thus

1

4

(
sec θ tan θ − ln

∣∣ sec θ + tan θ
∣∣)+ C =

1

4

(
2x · 2

√
x2 − 1/4− ln

∣∣2x+ 2
√
x2 − 1/4

∣∣)+ C

=
1

4

(
4x
√
x2 − 1/4− ln

∣∣2x+ 2
√
x2 − 1/4

∣∣)+ C.

The final answer is given in the last line above, repeated here:∫ √
4x2 − 1 dx =

1

4

(
4x
√

x2 − 1/4− ln
∣∣2x + 2

√
x2 − 1/4

∣∣)+ C.

Example 3.4. Evaluate

∫ √
4− x2
x2

dx. �

Answer. We use Key Idea (a) with a = 2, x = 2 sin θ, dx = 2 cos θ
and hence

√
4− x2 = 2 cos θ. This gives∫ √

4− x2
x2

dx =

∫
2 cos θ

4 sin2 θ
(2 cos θ) dθ

=

∫
cot2 θ dθ

=

∫
(csc2 θ − 1) dθ

= − cot θ − θ + C.

We need to rewrite our answer in terms of x. Using the reference
triangle found in Key Idea (a), we have cot θ =

√
4− x2/x and

θ = sin−1(x/2). Thus∫ √
4− x2
x2

dx = −
√

4− x2
x

− sin−1
(x

2

)
+ C.

Trigonometric Substitution can be applied in many situations,
even those not of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the

following example, we apply it to an integral we already know how
to handle.

Example 3.5. Evaluate

∫
1

x2 + 1
dx. �
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Answer. We know the answer already as tan−1 x + C. We apply
Trigonometric Substitution here to show that we get the same an-
swer without inherently relying on knowledge of the derivative of
the arctangent function.

Using Key Idea (b), let x = tan θ, dx = sec2 θ dθ and note that
x2 + 1 = tan2 θ + 1 = sec2 θ. Thus∫

1

x2 + 1
dx =

∫
1

sec2 θ
sec2 θ dθ

=

∫
1 dθ

= θ + C.

Since x = tan θ, θ = tan−1 x, and we conclude that

∫
1

x2 + 1
dx =

tan−1 x+ C.

Example 3.6. Evaluate

∫
1

(x2 + 6x+ 10)2
dx. �

Answer. We start by completing the square, then make the sub-
stitution u = x + 3, followed by the trigonometric substitution of
u = tan θ:∫

1

(x2 + 6x+ 10)2
dx =

∫
1(

(x+ 3)2 + 1
)2 dx =

∫
1

(u2 + 1)2
du.

Now make the substitution u = tan θ, du = sec2 θ dθ:

=

∫
1

(tan2 θ + 1)2
sec2 θ dθ

=

∫
1

(sec2 θ)2
sec2 θ dθ

=

∫
cos2 θ dθ.

Applying a power reducing formula, we have

=

∫ (
1

2
+

1

2
cos(2θ)

)
dθ

=
1

2
θ +

1

4
sin(2θ) + C.

(1)
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We need to return to the variable x. As u = tan θ, θ = tan−1 u.
Using the identity sin(2θ) = 2 sin θ cos θ and using the reference
triangle found in Key Idea (b), we have

1

4
sin(2θ) =

1

2

u√
u2 + 1

· 1√
u2 + 1

=
1

2

u

u2 + 1
.

Finally, we return to x with the substitution u = x + 3. We start
with the expression in Equation (1):

1

2
θ +

1

4
sin(2θ) + C =

1

2
tan−1 u+

1

2

u

u2 + 1
+ C

=
1

2
tan−1(x+ 3) +

x+ 3

2(x2 + 6x+ 10)
+ C.

Stating our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1

2
tan−1(x+ 3) +

x+ 3

2(x2 + 6x+ 10)
+ C.

Our last example returns us to definite integrals, as seen in our
first example. Given a definite integral that can be evaluated using
Trigonometric Substitution, we could first evaluate the correspond-
ing indefinite integral (by changing from an integral in terms of x
to one in terms of θ, then converting back to x) and then evaluate
using the original bounds. It is much more straightforward, though,
to change the bounds as we substitute.

Example 3.7. Evaluate

∫ 5

0

x2√
x2 + 25

dx. �

Answer. Using Key Idea (b), we set x = 5 tan θ, dx = 5 sec2 θ dθ,
and note that

√
x2 + 25 = 5 sec θ. As we substitute, we can also

change the bounds of integration.
The lower bound of the original integral is x = 0. As x = 5 tan θ,

we solve for θ and find θ = tan−1(x/5). Thus the new lower bound
is θ = tan−1(0) = 0. The original upper bound is x = 5, thus the
new upper bound is θ = tan−1(5/5) = π/4.

13



Thus we have∫ 5

0

x2√
x2 + 25

dx =

∫ π/4

0

25 tan2 θ

5 sec θ
5 sec2 θ dθ

= 25

∫ π/4

0

tan2 θ sec θ dθ.

We encountered this indefinite integral in Example 3.3 where we
found ∫

tan2 θ sec θ dθ =
1

2

(
sec θ tan θ − ln | sec θ + tan θ|

)
.

So

25

∫ π/4

0

tan2 θ sec θ dθ =
25

2

(
sec θ tan θ − ln | sec θ + tan θ|

)∣∣∣∣∣
π/4

0

=
25

2

(√
2− ln(

√
2 + 1)

)
≈ 6.661.
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