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Charles Li

1 Substitution

We motivate this section with an example. Let f(x) = (x2+3x−5)10.
We can compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x + 3) = (20x + 30)(x2 + 3x− 5)9.

Now consider this: What is
∫

(20x+ 30)(x2 + 3x− 5)9 dx? We have
the answer in front of us;∫

(20x + 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without start-
ing with f(x) as we did?

This section explores integration by substitution. It allows us to
“undo the Chain Rule.” Substitution allows us to evaluate the above
integral without knowing the original function first.

The underlying principle is to rewrite a “complicated” integral
of the form

∫
f(x) dx as a not–so–complicated integral

∫
h(u) du.

We’ll formally establish later how this is done. First, consider again
our introductory indefinite integral,

∫
(20x + 30)(x2 + 3x − 5)9 dx.

Arguably the most “complicated” part of the integrand is (x2+3x−
5)9. We wish to make this simpler; we do so through a substitution.
Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.

We have established u as a function of x, so now consider the dif-
ferential of u:

du = (2x + 3)dx.

Keep in mind that (2x + 3) and dx are multiplied; the dx is not
“just sitting there.”

Return to the original integral and do some substitutions through
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algebra:∫
(20x + 30)(x2 + 3x− 5)9 dx =

∫
10(2x + 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x + 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x
2
+ 3x − 5)

= (x2 + 3x− 5)10 + C

We stated before that integration by substitution “undoes” the
Chain Rule. Specifically, let F (x) and g(x) be differentiable func-
tions and consider the derivative of their composition:

d

dx

(
F
(
g(x)

))
= F ′(g(x))g′(x).

Thus ∫
F ′(g(x))g′(x) dx = F (g(x)) + C.

Integration by substitution works by recognizing the “inside” func-
tion g(x) and replacing it with a variable. By setting u = g(x), we
can rewrite the derivative as

d

dx

(
F
(
u
))

= F ′(u)u′.

Since du = g′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g′(x) dx =

∫
F ′(u)du = F (u) + C = F (g(x)) + C.

This concept is important so we restate it in the context of a
theorem.

Theorem 1.1 (Integration by Substitution). Let F and g be differ-
entiable functions.∫

F ′(g(x))g′(x) dx = F (g(x)) + C.
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If u = g(x), then du = g′(x)dx and∫
F ′(g(x))g′(x) dx =

∫
F ′(u) du = F (u) + C = F (g(x)) + C.

�

In below is a special case g(x) = ax + b.

Theorem 1.2 (Substitution With A Linear Function). Consider∫
F ′(ax+b) dx, where a 6= 0 and b are constants. Letting u = ax+b

gives du = a · dx, leading to the result∫
F ′(ax + b) dx =

1

a
F (ax + b) + C.

�

Example 1.1. Find ∫
(2x + 1)2015dx.

Answer. Let u = g(x) = 2x + 1, f(u) = u2015. Then du = 2dx.∫
(2x + 1)2015dx =

∫
u2015du

2

=
u2016

2× 2016
+ C

=
(2x + 1)2016

4032
+ C.

�

Example 1.2. Evaluate

∫
7

−3x + 1
dx.

Answer. View this a composition of functions f(g(x)), where
f(x) = 7/x and u = g(x) = −3x + 1. Thus du = −3dx. The
integrand lacks a −3; hence divide the previous equation by −3 to
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obtain −du/3 = dx.∫
7

−3x + 1
dx =

∫
7

u

du

−3

=
−7

3

∫
du

u

=
−7

3
ln |u|+ C

= −7

3
ln | − 3x + 1|+ C.

�

Example 1.3. Evaluate

∫
xex

2+5 dx

Answer. Knowing that substitution is related to the Chain Rule,
we choose to let u be the “inside” function of ex

2+5. (This is not
always a good choice, but it is often the best place to start.)

Let u = g(x) = x2 + 5, hence du = 2x dx. The integrand has
an x dx term, but not a 2x dx term. (Recall that multiplication is
commutative, so the x does not physically have to be next to dx
for there to be an x dx term.) We can divide both sides of the du
expression by 2:

du = 2x dx ⇒ 1

2
du = x dx.

We can now substitute.∫
xex

2+5 dx =

∫
e

u︷ ︸︸ ︷
x2 + 5 x dx︸︷︷︸

1
2
du

=

∫
1

2
eu du

=
1

2
eu + C (now replace u with x

2
+ 5)

=
1

2
ex

2+5 + C.

Thus
∫
xex

2+5 dx = 1
2
ex

2+5 + C. We can check our work by evalu-
ating the derivative of the right hand side. �
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Example 1.4. Evaluate

∫
x3
√
x4 + 1 dx

Answer. Let u = g(x) = x4 + 1, hence du = 4x3 dx.

du = 4x3 dx ⇒ 1

4
du = x3 dx.

We can now substitute.∫
x3
√
x4 + 1 dx =

∫ √
u
du

4

=
1

6
u3/2 + C

=
1

6
(x4 + 1)3/2 + C.

�

Example 1.5. Evaluate

∫
x3dx

(x2 + 1)2
.

Answer. Let u = x2 + 1. Then du = 2xdu.∫
x3dx

(x2 + 1)2
=

∫
x2du

2u2

=

∫
(u− 1)du

2u2
(eliminate all the x)

=

∫
du

2u
−
∫

du

2u2

=
ln |u|

2
+

1

2u
+ C

=
ln(1 + x2)

2
+

1

2(1 + x2)
+ C

(1 + x2 is always positive, so we can remove the absolute sign)

�

Remark: Try

∫
x5dx

(x2 + 1)2
. But the method fails for even power

for the numerator, e.g.

∫
x2dx

(x2 + 1)2
. We will learn how to integrate

this kind of integral later.
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Example 1.6. Evaluate

∫
exdx

ex + 1
.

Answer. Let u = ex + 1, du = exdx.∫
exdx

ex + 1
=

∫
du

u

= ln |u|+ C

= ln |ex + 1|+ C

�

Example 1.7. Evaluate

∫
x
√
x + 3 dx.

Answer. Recognizing the composition of functions, set u = x + 3.
Then du = dx, giving what seems initially to be a simple substitu-
tion. But at this stage, we have:∫

x
√
x + 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it.
We need to convert the x to an expression involving just u.

Since we set u = x + 3, we can also state that u − 3 = x. Thus
we can replace x in the integrand with u− 3. It will also be helpful
to rewrite

√
u as u

1
2 .∫

x
√
x + 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2

)
du

=
2

5
u

5
2 − 2u

3
2 + C

=
2

5
(x + 3)

5
2 − 2(x + 3)

3
2 + C.

Checking your work is always a good idea. In this particular case,
some algebra will be needed to make one’s answer match the inte-
grand in the original problem. �

Example 1.8. Evaluate

∫
1

x lnx
dx
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Answer. This is another example where there does not seem to
be an obvious composition of functions. The line of thinking used
in Example 1.7 is useful here: choose something for u and consider
what this implies du must be. If u can be chosen such that du also
appears in the integrand, then we have chosen well.

Choosing u = 1/x makes du = −1/x2 dx; that does not seem
helpful. However, setting u = lnx makes du = 1/x dx, which is
part of the integrand. Thus:∫

1

x lnx
dx =

∫
1

lnx︸︷︷︸
1/u

1

x
dx︸ ︷︷ ︸
du

=

∫
1

u
du

= ln |u|+ C

= ln | lnx|+ C.

The final answer is interesting; the natural log of the natural log.
Take the derivative to confirm this answer is indeed correct. �

2 Integration involving substitution of trigono-
metric functions

Example 2.1. Evaluate ∫
sinx cosxdx

Answer. Let u = sinx. Then du = cosxdx.∫
sinx cosxdx =

∫
udx

=
u2

2
+ C

=
1

2
sin2 x + C

�

Example 2.2. Evaluate ∫
sin3 xdx.
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Answer. Let u = cosx, du = − sinxdx.∫
sin3 xdx =

∫
(− sin2 x)du

=

∫
(cos2 x− 1)du

=

∫
(u2 − 1)du

=
u3

3
− u + C

=
cos3 x

3
− cosx + C.

�

Example 2.3. Evaluate ∫
cos5 x sin2 xdx.

Answer. Let u = sinx, du = cosxdx.∫
cos4 x sin2 xdu =

∫
(1− sin2 x)2 sin2 xdu

=

∫
(1− u2)2u2du

=

∫
(u2 − 2u4 + u6)du

=
u3

3
− 2u5

5
+

u7

7
+ C

=
sin3 x

3
− 2 sin5 x

5
+

sin7 x

7
+ C

�
Remark: the above method works for integral in the form∫

cosn x sinm x,

where one of n,m is odd and the other one is even. The case for
n,m having the same parity will be discussed in another lecture
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Example 2.4. Evaluate

∫
tanxdx.

Answer. Let u = cosx, du = − sinxdx.∫
tanxdx =

∫
sinx

cosx
dx

=

∫
−du
u

= − ln |u|+ C

= − ln | cosx|+ C

�

3 Definite integral using substitution

Proposition 3.1.∫ b

a

f(u(x))u′(x)dx =

∫ u(b)

u(a)

f(u)du.

�

Proof. Let F (x) be the antiderivative of f(x). Then∫
f(u(x))u′(x) =

∫
f(u(x))du(x) = F (u(x)) + C.

Hence ∫
f(u(x))u′(x) = [F (u(x))]ba = F (u(a))− F (u(b)).

On the other hand∫ u(b)

u(a)

f(u)du = [F (u)]
u(b)
u(a) = F (u(a))− F (u(b)).

Example 3.1. Compute∫ 1

0

8x(x2 + 1)dx.
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Answer. Let u = u(x) = x2 + 1. Then du = 2xdx. When x = 0,
u = 02 + 1 = 1. When x = 1, u = 12 + 1 = 2.∫ 1

0

8x(x2 + 1)dx =

∫ 2

1

8u
du

2

=
[
2u2
]2
1

= 2× 22 − 2× 12 = 6.

�

Example 3.2. Compute ∫ e2

e

1

x lnx
dx.

Answer. Let u = lnx, du = dx
x

. When x = e, u = ln e = 1. When
x = e2, u = lnx = 2.∫ e2

e

1

x lnx
dx =

∫ 2

1

1

u
du

= lnu|21
= ln 2− ln 1 = ln 2.

�

Example 3.3. Compute∫ π/4

0

tan3 x sec2 xdx.

Answer. Let u(x) = tan x, du = sec2 xdx, u(0) = 0 and u(π
4
) = 1.∫ π/4

0

tan3 x sec2 xdx =

∫ 1

0

u3du

=

[
u4

4

]1
0

=
1

4

�
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