
2018 MATH1010
Lecture 2: Sequence and Series

Charles Li

The lecture note was used during 2016-17 Term 1. It is
for reference only. It may contain typos. Read at your own
risk.

1 Sequences

Definition 1 a1, a2, a3, . . . is a called a sequence of real numbers.

Example 1 (sequence given by formula)

1. Define an = 3n + 1. Then a1 = 4, a2 = 7, a3 = 10, a4 = 13, . . .
is a sequence.

2. Define an = 3× 2n. Then a1 = 6, a2 = 12, a3 = 24, a4 = 48, . . .
is a sequence.

3. Define an = 1
n
. Then a1 = 1

1
, a2 = 1

2
, a3 = 1

3
, a4 = 1

4
is a

sequence.

Definition 2 1. Let c, d be two fixed real numbers. Let an = c +
nd. The sequence {an} is called an arithmetic sequence.

2. Let c, r be two fixed real numbers. Let an = crn. The sequence
{an} is called a geometric sequence.

Example 2

1. an = 2 + 3n is an arithmetic sequence.

2. an = 3
2n

is a geometric sequence.

Example 3 (recursive sequence)
a1 = 1, an = 1 + a2n−1 for n ≥ 2. Then a1 = 1, a2 = 1 + a21 = 2,
a3 = 1 + a22 = 5, a4 = 1 + a23 = 26, . . .

Example 4 (Fibonacci sequence)
a1 = 1, a2 = 1, an = an−1 + an−2 for n ≥ 3. Then a1 = 1, a2 = 1,
a3 = a2 +a1 = 2, a4 = a3 +a2 = 2 + 1 = 3, a5 = a4 +a3 = 3 + 2 = 5,
. . .
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2 Limit of sequences

Definition 3 Let a1, a2, . . . , be a sequence. If an gets closer and
closer to a real number L as n gets bigger and bigger, then we say
that {an} converges to L, or L is the limit of {an}. Denoted by

lim
n→∞

an = L.

If no such L exists, then we say that {an} diverges.

Example 5 Let an = 1
n
, then lim

n→∞
an = 0.

Example 6 Let {bn} = {1, 1
2
, 2
3
, 3
4
, . . . , n−1

n
, . . . , }. Then lim

n→∞
bn = 1.

Example 7 Let cn =
√
n, then cn goes to infinity. We can write

lim
n→∞

cn =∞.

Example 8 dn = (−1)n, then dn diverges.

Example 9 Let k be a constant. Let an = k. Then lim
n→∞

an = k.

Rigorous definition of limit (can be skipped)
We say that

lim
n→∞

an = L

if for every ε > 0, there exists N , such that for n > N ,

|an − L| < ε.

Example 10 Use the rigourous definition to show that

lim
n→∞

1

n
= 0.

Given ε > 0, let N = 1/ε. Then for n > N ,∣∣∣∣ 1n − 0

∣∣∣∣ < 1

1/ε
= ε.

Theorem 4 Let {an}, {bn} be two sequences. Suppose

lim
n→∞

an = A, lim
n→∞

bn = B,

then we have
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1. Sum rule: lim
n→∞

(an + bn) = A+B

2. Difference rule: lim
n→∞

(an − bn) = A−B

3. Constant multiple rule: lim
n→∞

kan = kA, where k is a con-

stant.

4. Product rule: lim
n→∞

(anbn) = AB

5. Quotient rule: lim
n→∞

an
bn

=
A

B
, if B 6= 0.

Example 11

lim
n→∞

2

n
= 2 lim

n→∞
= 2× 0 = 0.

Example 12

lim
n→∞

n− 2

n
= lim

n→∞

(
1− 2

n

)
= lim

n→∞
1− lim

n→∞

2

n
= 1− 0 = 1.

Example 13

lim
n→∞

(
n− 2

n

)2

=

(
lim
n→∞

n− 2

n

)(
lim
n→∞

n− 2

n

)
= 1× 1 = 1.

2.1 Limit of rational functions

Example 14 (Technique of finding limit of rational functions)

lim
n→∞

n2 + 1

n2 − 2
= lim

n→∞

1 + 1
n2

1− 2
n2

=
limn→∞

(
1 + 1

n2

)
limn→∞

(
1− 2

n2

)
=

1 + limn→∞
1
n2

1− limn→∞
2
n2

=
1− 0

1− 0
= 1.

Example 15

lim
n→∞

2n3 − 3n2 + 1

3n3 + n2 − 2
= lim

n→∞

(2n3 − 3n2 + 1)/n3

(3n3 + n2 − 2)/n3
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= lim
n→∞

2− 3
n

+ 1
n3

3 + 1
n
− 2

n3

=
2− 0 + 0

3 + 0− 0
=

2

3
.

Technique: divide the denominator and the numerator by n to the
highest power.

Example 16

lim
n→∞

3n2 − 7

n+ 8
=∞.

lim
n→∞

3n2 − 7

n3 + 8
= 0.

Theorem 5 Let p(x) and q(x) be two polynomials given by

p(x) = a0 + a1x+ a2x
2 + · · ·+ ahx

h, ah 6= 0,

q(x) = b0 + b1x+ b2x
2 + · · ·+ bkx

k bk 6= 0.

Then

lim
n→∞

p(n)

q(n)
=


ah
bk

if h = k,

0 if h < k,

diverges if h > k.

2.2 Limits involving radicals

Example 17

lim
n→∞

√
2n2 + 2

n+ 3
= lim

n→∞

√
2 + 2

n2

1 + 3
n

=

√
2

1
=
√

2.

Example 18

lim
n→∞

(
√
n+ 1−

√
n) = lim

n→∞
(
√
n+ 1−

√
n)

(
√
n+ 1 +

√
n)

(
√
n+ 1 +

√
n)

= lim
n→∞

n+ 1− n
(
√
n+ 1 +

√
n)

= lim
n→∞

1

(
√
n+ 1 +

√
n)

= 0.

Example 19 Find

lim
n→∞

n2/3((n+ 1)1/3 − n1/3).
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We use the formula :

a3 − b3 = (a− b)(a2 + ab+ b2).

lim
n→∞

n2/3((n+ 1)1/3 − n1/3)

= lim
n→∞

n2/3(n+ 1)1/3 − n1/3)((n+ 1)2/3 + (n+ 1)1/3n1/3 + n2/3)

(n+ 1)2/3 + (n+ 1)1/3n1/3 + n2/3

= lim
n→∞

n2/3

(n+ 1)2/3 + (n+ 1)1/3n1/3 + n2/3
.

Divide the denominator and the numerator by n2/3, the above is

= lim
n→∞

1

(1 + 1
n
)2/3 + (1 + 1

n
)1/3 + 1

=
1

3
.

3 Bounded Monotonic Sequences

Definition 6 A sequence {an} is bounded from above (resp.
bounded from below) if there exists a number M (resp. m) such
that an ≤M (resp. an ≥ m) for all n.

If {an} is bounded from above and below, then it is said to be
bounded. Otherwise it is said to be unbounded.

Example 20 1, 2, 3, . . . , n, . . . is unbounded.

Example 21 1
2
, 2
3
, 3
4
, . . . , n

n+1
, . . . is bounded above by 1 (or any

number greater than 1) and bounded below by 1
2

(or any number

less than 1
2
).

Definition 7 A sequence {an} is monotonic increasing (resp.
monotonic decreasing) if an ≤ an+1 (resp. an ≥ an+1) for all n.

A sequence is said to be monotonic if it is either monotonic
increasing or monotonic decreasing.

Example 22

1. The sequence 1, 2, 3, . . . , n, . . . is monotonic increasing.

2. The sequence 1
2
, 2
3
, 3
4
, . . . , n

n+1
, . . . is monotonic increasing.
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3. The sequence 1
1
, 1
2
, 1
3
, . . . , 1

n
, . . . is monotonic decreasing

4. The sequence 2, 2, 2, . . . , 2, . . . is both monotonic increasing and
decreasing.

5. The sequence 1,−1, 1,−1, 1,−1, . . . is not monotonic.

Theorem 8 (The Monotonic Sequence Theorem) If a sequence
{an} monotonic increasing (resp. monotonic decreasing) and bounded
from above (resp. below), then the sequence converges.

Example 23

1. The sequence 1
2
, 2
3
, 3
4
, . . . , n

n+1
, . . . is monotonic increasing and

is bounded above by 1. So lim
n→∞

n

n+ 1
exists.

In fact, we know that the limit is bounded by 1.

2. The sequence 1
1
, 1
2
, 1
3
, . . . , 1

n
, . . . is monotonic decreasing and is

bounded below by 0. So lim
n→∞

1

n
exists.

In fact, we know that the limit is 0.

Example 24

a1 =
1

0!
= 1,

a2 =
1

0!
+

1

1!
= 2,

a3 =
1

0!
+

1

1!
+

1

2!
= 2.5,

...
...

an =
1

0!
+

1

1!
+

1

2!
+ · · ·+ 1

n!

Obviously the sequence is monotonic increasing. Then

an ≤ 1 + 1 +
1

2
+

1

22
+ · · ·+ 1

2n−1
= 1 +

1− 1
2n

1− 1
2

≤ 1 +
1

1− 1
2

= 3.

So an converges. In fact to converges to e = 2.7182818459... and is
one of the very important constants in mathematics (the other one
is π).
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A Mysterious formula (can be skipped, just for fun)
0, 1, π, e, i =

√
−1 are five important constant in mathematics, the

are related by
eπi + 1 = 0.

Example 25 Let {an} be a sequence defined by

a1 = 1, an+1 = 1 +
an

1 + an
, for n ≥ 1.

Show that lim
n→∞

an exists.

Answer:
Step 1. {an} is monotonic increasing:
We are going to prove the statement by induction.
Step 1a:

a2 − a1 = (1 +
a1

1 + a1
)− a1 =

3

2
− 1 =

1

2
> 0.

Step 1b: Assume ak+1 ≥ ak. Then

ak+2 − ak+1 = (1 +
ak+1

1 + ak+1

)− (1 +
ak

1 + ak
)

=
ak+1

1 + ak+1

− ak
1 + ak

=
ak+1 − ak

(1 + ak+1)(1 + ak)
≥ 0

Step 2 {an} is bounded above by 2:
Obviously all an are positive.

1 +
an

1 + an
≤ 1 + 1 = 2.

Hence by the Monotone convergence theorem, lim
n→∞

an exists. Let A

be the limit.
Step3: How to find the limit A?

an+1 = 1 +
an

1 + an
.

Then

lim
n→∞

an+1 = lim
n→∞

(
1 +

an
1 + an

)
= 1 +

limn→∞ an
1 + limn→∞ an
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Thus

A = 1 +
A

1 + A

A2 + A− 1 = 0.

Hence

A =
1 +
√

5

2
or

1−
√

5

2
(rejected because A is positive).

Theorem 9 Suppose 0 < r < 1, then lim
n→∞

rn = 0.

Proof. Let an = rn. Then an+1 = ran < an and an > 0. Hence an is
a monotonic decreasing sequence bounded below, so it converges to
a number A. Next

A = lim
n→∞

rn+1 = lim
n→∞

rrn = r lim
n→∞

rn = rA.

Thus A = 0. �

4 The Sandwich Theorem

Theorem 10 (The Sandwich Theorem) Let {an}, {bn}, {cn} be
sequences with an ≤ bn ≤ cn for all n, and if limn→∞ an = limn→∞ cn =
L. Then limn→∞ bn = L.

Example 26

1.

lim
n→∞

(−1)n

n
= 0

because

− 1

n
≤ (−1)n

n
≤ 1

n
.

Let an = − 1
n
, bn = (−1)n

n
and cn = 1

n
. Then limn→∞ an =

limn→∞ cn = 0. The result follows from the Sandwich theorem.

2.
lim
n→∞

cosn

n
= 0
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because

− 1

n
≤ cosn

n
≤ 1

n
.

Let an = − 1
n
, bn = cosn

n
and cn = 1

n
. Then limn→∞ an =

limn→∞ cn = 0. The result follows from the Sandwich theorem.

3. If |r| < 1, then
lim
n→∞

rn = 0

as
−|r|n ≤ rn ≤ |r|n.

Example 27 Alternate proof of

lim
n→∞

rn = 0

for 0 < r < 1.
Let b = 1

r
− 1. Then r = 1

1+b
. By the binomial theorem

(1 + b)n = 1 + nb+ · · · ... ≥ 1 + nb.

So

0 ≤ rn ≤ 1

(1 + b)n
≤ 1

1 + nb
.

Because limn→∞ 0 = limn→∞
1

1+nb
= 0. By the Sandwich theorem

limn→∞ r
n = 0.

5 Series

Let {an} be a sequence. Let

s1 = a1

s2 = a1 + a2

a3 = a1 + a2 + a3
...
...

sn = a1 + a2 + a3 + · · ·+ an

The expression
∞∑
k=1

ak = a1 + a2 + a3 + · · ·
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is call and infinite series, an is called the n-th term of the series,
sn is called the n-th partial sum, the sequence {sn} is called the
sequence of partial sums. If

lim
n→∞

sn = L,

we say the series converges and the sum is L, denoted by

∞∑
k=1

ak = a1 + a2 + · · · = L.

Otherwise the series diverges.

Theorem 11 Suppose |r| < 1, then the infinite series

1 + r + r2 + r3 + · · · = 1

1− r
.

Proof.

sn = 1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
.

lim
n→∞

1− rn

1− r
=

1− limn→∞ r
n

1− r
=

1

1− r
.

�
We can show that if |r| > 1, the infinite series diverges.

Example 28
∞∑
k=0

1

k!
=

1

1!
+

1

2!
+

1

3!
+ · · ·

converges to a constant e.

Example 29 Let

an =
1

n(n+ 1)
.

Show that
∑∞

k=1 ak converges and the sum is 1.
Answer

ak =
1

k(k + 1)
=

1

k
− 1

k + 1
.

sn = a1 + a2 + · · ·+ an = (1− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n
− 1

n+ 1
)
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= 1− 1

2
+

1

2
− 1

3
+

1

3
− · · · − 1

n+ 1
= 1− 1

n+ 1
.

Then
∞∑
n=1

an = lim
n→∞

Sn = lim
n→∞

(1− 1

n
) = 1.

Example 30 Show that
∑∞

k=1
1
k2

converges.

Answer: Because ak = 1
k2

is positive, so sn is a monotonic increas-
ing sequence. Also for k ≥ 2,

ak =
1

k2
≤ 1

k(k − 1)

sn ≤ 1 +
1

1× 2
+

1

2× 3
+ · · ·+ ≤ 1 + 1.

The last step is from the monotone sequence theorem. So the sum
converges.
Interesting facts, just for fun, can be skipped In fact, we have

∞∑
k=1

1

k2
=
π2

6
,

∞∑
k=1

1

k4
=
π4

60
,

∞∑
k=1

1

k6
=

π6

945
,

∞∑
k=1

1

k8
=

π8

9450
.

But
∑∞

k=1
1
k

diverges and there is no easy formula for
∑∞

k=1
1
k3

. There
is a famous Riemann Zeta function:

ζ(s) =
∞∑
k=1

=
1

1s
+

1

2s
+

1

3s
+ · · ·

and also an important conjecture called the Riemann hypothesis.
You can get one million US dollars if you solve it.
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