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Lecture 18: The definite integral

Charles Li

1 The definite integral as area

Suppose f is a function on [a, b]. Suppose further that f(x) is posi-
tive on [a, b]. Then we define∫ b

a

f(x)dx = area between f(x) and the x-axis.

What if some of the value of f(x) is negative? Because f(x) is
negative, the ”height” of at this point is negative, so we take the
area as negative. Therefore we have the following definition.

Definition 1.1 (The Definite Integral, Total Signed Area). Let y =
f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:

(area under f and above the x–axis on [a, b]) − (area above f and
under the x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of
f on [a, b], denoted ∫ b

a

f(x) dx,

where a and b are the bounds of integration. �

By our definition, the definite integral gives the “signed area
under f .” We usually drop the word “signed” when talking about
the definite integral, and simply say the definite integral gives “the
area under f ” or, more commonly, “the area under the curve.”

Example 1.1. Consider the function f given below. Compute
∫ 5

0
f(x)dx.

Answer. The graph of f is above the x-axis on [0, 3]. The area is
1
2
× 3× 1 = 1.5.
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The graph of f is under the x-axis on [3, 5]. This is the “negative”
area. The area is −1

2
× 2× 1 = −1. Hence∫ 5

0

f(x)dx = 1.5− 1 = 0.5.

�
Use the geometric interpretation, we have

Theorem 1.1 (Properties of the Definite Integra). Let f and g be
defined on a closed interval I that contains the values a, b and c,
and let k be a constant. The following hold:

1.

∫ a

a

f(x) dx = 0

2.

∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

3.

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

4.

∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

5.

∫ b

a

k · f(x) dx = k ·
∫ b

a

f(x) dx

6. Suppose f(x) ≤ g(x), then

∫
f(x) dx ≤

∫
g(x) dx.

�
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Proof. We give the geometric interpretation for some properties. For
rigorous proof we need something call the Riemann sum.
For property 1, area over a single point a is 0. For property 2, area
over [a, b] is same as summation of areas over [a, c] and [c, b]. What
if a < b < c? Then we need property 3.
In fact, if property 2 is true.∫ b

a

f(x) dx+

∫ a

b

f(x) dx =

∫ a

a

f(x) dx = 0.

So property 3 is valid.

Example 1.2. Consider the graph of a function f(x) shown below.

.....

a

.

b

.

c

.

x

.

y

Answer the following:

1. Which value is greater:

∫ b

a

f(x) dx or

∫ c

b

f(x) dx?

2. Is

∫ c

a

f(x) dx greater or less than 0?

3. Which value is greater:

∫ b

a

f(x) dx or

∫ b

c

f(x) dx?

Answer.

1.
∫ b

a
f(x) dx has a positive value (since the area is above the x–

axis) whereas
∫ c

b
f(x) dx has a negative value. Hence

∫ b

a
f(x) dx

is bigger.

2.
∫ c

a
f(x) dx is the total signed area under f between x = a and

x = c. Since the region below the x–axis looks to be larger
than the region above, we conclude that the definite integral
has a value less than 0.
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3. Note how the second integral has the bounds “reversed.” There-

fore
∫ b

c
f(x) dx represents a positive number, greater than the

area described by the first definite integral. Hence
∫ b

c
f(x) dx

is greater.

�

Example 1.3. Evaluate the following definite integrals:

1.

∫ 5

−2

(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

Answer.

.....(−2, −8).
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1. We see we need to compute the areas of two regions, which
we have labeled R1 and R2. Both are triangles, so the area
computation is straightforward:

R1 :
1

2
(4)(8) = 16 R2 :

1

2
(3)6 = 9.

Region R1 lies under the x–axis, hence it is counted as negative
area (we can think of the triangle’s height as being “−8”), so∫ 5

−2

(2x− 4) dx = −16 + 9 = −7.

2. Recognize that the integrand of this definite integral describes
a half circle with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1

2
πr2 =

9

2
π.

�
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2 Riemman Sum

Consider the region given below, which is the area under y = 4x−x2

on [0, 4]. What is the signed area of this region – i.e., what is∫ 4

0
(4x− x2) dx?
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We can 4 rectangles of equal width of 1. This partitions the
interval [0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On
each subinterval we will draw a rectangle.

There are three common ways to determine the height of these
rectangles: the Left Hand Rule, the Right Hand Rule, and
the Midpoint Rule. The Left Hand Rule says to evaluate the
function at the left–hand endpoint of the subinterval and make the
rectangle that height. In the figure below, the rectangle drawn on
the interval [2, 3] has height determined by the Left Hand Rule; it
has a height of f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval,
evaluate the function at the right endpoint and make the rectangle
that height. In the figure, the rectangle drawn on [0, 1] is drawn
using f(1) as its height; this rectangle is labeled “RHR.”.
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The Midpoint Rule says that on each subinterval, evaluate the
function at the midpoint and make the rectangle that height. The
rectangle drawn on [1, 2] was made using the Midpoint Rule, with
a height of f(1.5). That rectangle is labeled “MPR.”

These are the three most common rules for determining the heights
of approximating rectangles, but one is not forced to use one of these
three methods. The rectangle on [3, 4] has a height of approximately
f(3.53), very close to the Midpoint Rule. It was chosen so that the
area of the rectangle is exactly the area of the region under f on
[3, 4]. (Later you’ll be able to figure how to do this, too.)

Exercise 2.1. Approximate the value of
∫ 4

0
(4x − x2) dx using the

Left Hand Rule, the Right Hand Rule, and the Midpoint Rule, using
4 equally spaced subintervals.

Answer.

1. We break the interval [0, 4] into four subintervals as before. In
the figure below, we see 4 rectangles drawn on f(x) = 4x− x2

using the Left Hand Rule. (The areas of the rectangles are
given in each figure.) We add up the areas of each rectangle
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(height× width) for our Left Hand Rule approximation:

f(0) · 1 + f(1) · 1 + f(2) · 1 + f(3) · 1 =

0 + 3 + 4 + 3 = 10.

2. Right hand rule.
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f(1) · 1 + f(2) · 1 + f(3) · 1 + f(4) · 1 =

3 + 4 + 3 + 0 = 10.

3. Midpoint rule.
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This gives an approximation of
∫ 4

0
(4x− x2) dx as:

f(0.5) · 1 + f(1.5) · 1 + f(2.5) · 1 + f(3.5) · 1 =

1.75 + 3.75 + 3.75 + 1.75 = 11.

We get values 10 or 11. �
The above approximation is not good enough.
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Example 2.1. Approximate
∫ 4

0
(4x − x2) dx using the Right Hand

Rule and summation formulas with 16 equally spaced intervals.

Answer. Write f(x) = 4x − x2. We divide the interval [0, 4] into
16 equal intervals. Each interval has length ∆x = 4−0

16
= 0.25. The

points divide the interval are denoted by

0 = x0 < x1 < x2 < · · · < x15 < x16 = 4.

Because x1 − x0 = x2 − x1 = x3 − x2 = · · · = x16 − x15 = 0.25, we
have

xi = 0.25i.

The approximation by the Right Hand Rule is

16∑
i=1

f(xi)∆x =
16∑
i=1

f(xi)∆x

= 0.25× f(0.25) + 0.25× f(0.5) + · · · 0.25× f(4) = 10.625

�
We now discuss the general formula for summation using Left

Hand, Right Hand and Midpoint Rules to approximate
∫ b

a
f(x) dx

with n equally spaced intervals
We first divide [a, b] into n equal intervals. Each interval has length

∆x =
b− a
n

.

The points divided the intervals are denoted by

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Because xi − xi−1 = ∆x. We have

xi = a+ i∆xi.
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Theorem 2.1. The summation formula using Left Hand Rules to

approximate
∫ b

a
f(x)dx with n equally space intervals is

n∑
i=1

f(xi−1)∆x =
b− a
n

n∑
i=1

f(a+ (i− 1)
b− a
n

). (1)

Using Right Hand Rule

n∑
i=1

f(xi)∆x =
b− a
n

n∑
i=1

f(a+ i
b− a
n

). (2)

Using Midpoint rule

n∑
i=1

f(
xx−1 + xi

2
)∆x =

b− a
n

n∑
i=1

f(a+ (i− 1

2
)
b− a
n

). (3)

�

Example 2.2. Approximate
∫ 4

0
(4x − x2) dx using the Right Hand

Rule and summation formulas with n equally spaced intervals.

Answer. By (2),

4

n

n∑
i=1

f(i
4

n
) =

4

n

n∑
i=1

(
16i

n
− 16i2

n2

)
=

64

n2

n∑
i=1

−64

n3

n∑
i=1

i2

=
64

n2

n(n+ 1)

2
− 64

n3

n(n+ 1)(2n+ 1)

6

=
32

3

(
1− 1

n2

)
.

Here we use
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

�
The summations for the Left Hand, Right Hand and Midpoint

Rules looked like. Each had the same basic structure, which was:

1. each rectangle has the same width, which we referred to as ∆x,
and
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2. each rectangle’s height is determined by evaluating f at a par-
ticular point in each subinterval. For instance, the Left Hand
Rule states that each rectangle’s height is determined by eval-
uating f at the left hand endpoint of the subinterval the rect-
angle lives on.

One could partition an interval [a, b] with subintervals that did not
have the same size. We refer to the length of the first subinterval
as ∆x1, the length of the second subinterval as ∆x2, and so on,
giving the length of the i th subinterval as ∆xi. Also, one could
determine each rectangle’s height by evaluating f at any point in the
i th subinterval. We refer to the point picked in the first subinterval
as c1, the point picked in the second subinterval as c2, and so on,
with ci representing the point picked in the i th subinterval. Thus
the height of the i th subinterval would be f(ci), and the area of the
i th rectangle would be f(ci)∆xi.

Summations of rectangles with area f(ci)∆xi are named after
mathematician Georg Friedrich Bernhard Riemann, as given in the
following definition.

Definition 2.1 (Riemann Sum). Let f be defined on the closed
interval [a, b] and let

a = x0 < x1 < . . . < xn = b

is a partition of [a, b]. Let ∆xi denote the length of the i th subinter-
val [xi−1, xi] and let ci denote any value in the i th subinterval.

The sum
n∑

i=1

f(ci)∆xi

is a Riemann sum of f on [a, b]. �

Example 2.3. Using the Right Hand Rule, we take

∆xi =
b− a
n

, xi = a+ i
b− a
n

, ci = xi.

For Left Hand Rule,
ci = xi−1.

For Mid Point Rule,

ci =
xi−1 + xi

2
.
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Example 2.4. Suppose f attain maximum (resp. minimum) on
[xi−1, xi] at x = Mi (resp. x = mi). The the corresponding Riemann

sum is bigger (resp. smaller) than
∫ b

a
f(x)dx, i.e.

n∑
i=1

f(Mi)∆xi ≥
∫ b

a

f(x)dx ≥
n∑

i=1

f(mi)∆xi.

Example 2.5. Approximate
∫ 1

0
ex with n = 10.

x0 = 0, x1 = 0.01, x2 = 0.04, x3 = 0.09, x4 = 0.16, x5 = 0.25,
x6 = 0.36, x7 = 0.49, x8 = 0.64, x9 = 0.81, x10 = 1.
c1 = 0.001, c2 = 0.011, c3 = 0.041, c4 = 0.091, c5 = 0.161, c6 =
0.251, c7 = 0.361, c8 = 0.491, c9 = 0.641, c10 = 0.811.
Answer. ∆x1 = x1 − x0 = 0.01, ∆x2 = x2 − x1 = 0.03, ∆x3 =
x3 − x2 = 0.05, ∆x4 = x4 − x3 = 0.07, ∆x5 = x5 − x4 = 0.09,
∆x6 = x6−x5 = 0.11, ∆x7 = x7−x6 = 0.13, ∆x8 = x8−x7 = 0.15,
∆x9 = x9 − x8 = 0.17, ∆x10 = x10 − x9 = 0.19. The Riemann sum
is

10∑
i=1

f(xi)∆xi = 0.1597

�

Example 2.6. Approximate
∫ 5

−1
(2x−3)dx by the Right Hand Rule,

Left Hand Rule and Middle Point Rule with n equally spaced subin-
tervals, then take the limit as n→∞ to find the exact area.

Answer. By (1), the Riemann sum using the Left Hand Rule is

6

n

n∑
i=1

(
2(−1 +

6(i− 1)

n
)− 3

)
=

6

n

n∑
i=1

(−5− 12i

n
)

=
6

n

(
−5n− 12

n

n(n+ 1)

2

)
= 6− 36

n
.

The area is

lim
n→∞

6− 36

n
= 6.
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By (2), the Riemann sum using the Right hand Rule is

6

n

n∑
i=1

(
2(−1 +

6i

n
)− 3

)
=

6

n

n∑
i=1

(−5 +
12i

n
)

=
6

n

(
−5n+

12

n

n(n+ 1)

2

)
= 6 +

36

n
.

The area is

lim
n→∞

6 +
36

n
= 6.

By (3), the Riemann sum using the Right Hand Rule is

6

n

n∑
i=1

(
2(−1 +

6(i− 1/2)

n
)− 3

)
=

6

n

n∑
i=1

(−5 +
12i

n
− 6

n
)

=
6

n

(
−5n− 12

n

n(n+ 1)

2
− 6

)
= 6.

The area is
lim
n→∞

6 = 6.

�

3 Limit of the Riemann Sum

We have used limits to evaluate exactly given definite limits. Will
this always work? We will show, given not–very–restrictive condi-
tions, that yes, it will always work.

Let SL(n) (SR(n), SM(n) resp.) be the Riemann sum using the
Left Hand Rule (1) (Right Hand Rule (2) , Middle Point Rule (3)
resp.).

Theorem 3.1. If f is a continuous function on [a, b], then

lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) =

∫ b

a

f(x)dx.

�
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Theorem 3.2. If f is a continuous function on [a, b], then the limit
of the Riemann sum

lim
max{∆xi}→0

n∑
i=1

f(ci)∆xi

the limit is used to define
∫ b

a
f(x)dx, i.e.

lim
max{∆xi}→0

n∑
i=1

f(ci)∆xi =

∫ b

a

f(x)dx.

�

We can use the above theorem to prove Theorem 1.1 Property
4 (other properties can be proved similarly) the Riemman sum for
f + g is

n∑
i=1

(f(ci) + g(ci)∆xi =
n∑

i=1

f(ci)∆xi +
n∑

i=1

g(ci)∆xi.

The result follows by letting max{∆xi} → 0.

4 Appendix: Geometric interpretation

In below is the geometric interpretation

1. we want to find the area

2. Divide the interval

3. Use rectangles to approximate the area

4. Calculate the area of each rectangle and sum them up

5. More intervals give better approximation
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