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Lecture 16: Taylor Series

Charles Li

Warning: Skip the material involving the estimation of error term

Reference: APEX Calculus.
This lecture introduced Taylor Polynomial and Taylor Series. One of the problems
addressed by this chapter is this: suppose we know information about a function and its
derivatives at a point, such as f(1) = 3, f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on.
What can I say about f(x) itself? Is there any reasonable approximation of the value of
f(2)? The topic of Taylor Series addresses this problem, and allows us to make excellent
approximations of functions when limited knowledge of the function is available.

1 Question related to polynomials

Example 1.1. Suppose

f(x) = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + · · ·+ an(x− c)n.

Find ak.

Answer.

ak =
f (k)(c)

k!
.

The steps are given as below.
f(c) = a0.

f ′(x) = a1 + 2a2(x− c) + 3a3(x− c)2 + · · ·+ nan(x− c)n−1.
So

f ′(c) = a1.

f ′′(x) = 2a2 + 6a3(x− c) + · · ·+ n(n− 1)an(x− c)n−2.
So

f ′′(c) = 2a2.

Similarly

f (k)(x) = k!ak + (2 · · · (k + 1))(x− c) + (3 · · · (k + 2))(x− c)2 + · · ·+

So
f (k)(c) = k!ak.

Or

ak =
f (k)(c)

k!
.

�
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Example 1.2. Suppose pn(x) is a polynomial with degree n in the form of

a0 + a1(x− c) + a2(x− c)2 + · · ·+ an(x− c)n.

Find pn(x) such that

f(c) = pn(c), f ′(c) = p′n(c), f ′′(c) = p′′n(c), . . . ,

Answer. We can take

ak =
f (k)(c)

k!
since

f (k)(c) = p(k)n (c) = k!ak.

�

2 Taylor Polynomials

Consider a function y = f(x) and a point
(
c, f(c)

)
. The derivative, f ′(c), gives the

instantaneous rate of change of f at x = c. Of all lines that pass through the point(
c, f(c)

)
, the line that best approximates f at this point is the tangent line; that is, the

line whose slope (rate of change) is f ′(c).
In Figure 1, we see a function y = f(x) graphed. The table below the graph shows

that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at x = 0 is p1(x) =
1(x − 0) + 2 = x + 2. The tangent line is also given in the figure. Note that “near”
x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f well.
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Figure 1: Plotting y = f(x) and a table of derivatives of f evaluated at 0.
f(0) = 2 f ′′′(0) = −1
f ′(0) = 1 f (4)(0) = −12
f ′′(0) = 2 f (5)(0) = −19

One shortcoming of this approximation is that the tangent line only matches the slope
of f ; it does not, for instance, match the concavity of f . We can find a polynomial, p2(x),
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that does match the concavity without much difficulty, though. The table in Figure 1
gives the following information:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properties. That is, we
need

p2(0) = 2 p′2(0) = 1 p′′2(0) = 2.

By the discussion in the previous section,

p2(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 = 2 + x+ x2.

This function is plotted with f in Figure 2.
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Figure 2: Plotting f , p2 and p4.
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Figure 3: Plotting f and p13.

We can repeat this approximation process by creating polynomials of higher degree
that match more of the derivatives of f at x = 0. In general, a polynomial of degree
n can be created to match the first n derivatives of f . Figure 2 also shows p4(x) =
−x4/2−x3/6 +x2 +x+ 2, whose first four derivatives at 0 match those of f . (Using the

table in Figure 1, start with p
(4)
4 (x) = −12 and solve the related initial–value problem.)
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As we use more and more derivatives, our polynomial approximation to f gets better
and better. In this example, the interval on which the approximation is “good” gets
bigger and bigger. Figure 3 shows p13(x); we can visually affirm that this polynomial
approximates f very well on [−2, 3]. (The polynomial p13(x) is not particularly “nice”.
It is

16901x13

6227020800
+

13x12

1209600
− 1321x11

39916800
− 779x10

1814400
− 359x9

362880
+

x8

240
+

139x7

5040
+

11x6

360
− 19x5

120
− x4

2
− x3

6
+ x

2
+ x + 2.)

The polynomials we have created are examples of Taylor polynomials, named after
the British mathematician Brook Taylor who made important discoveries about such
functions. While we created the above Taylor polynomials by solving initial–value prob-
lems, it can be shown that Taylor polynomials follow a general pattern that make their
formation much more direct. This is described in the following definition.

Definition 2.1 (Taylor Polynomial, Maclaurin Polynomial). Let f be a function whose
first n derivatives exist at x = c.

1. The Taylor polynomial of degree n of f centered at x = c is

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · ·+ f (n)(c)

n!
(x− c)n.

2. A special case of the Taylor polynomial is the Maclaurin polynomial, where c = 0.
That is, the Maclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn.

�

We will practice creating Taylor and Maclaurin polynomials in the following examples.

Example 2.1. Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

Answer.

1. We start with creating a table of the derivatives of ex evaluated at x = 0.
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f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

By the definition of the Maclaurin series, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f n(0)

n!
xn

= 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 + · · ·+ 1

n!
xn.

2. Using our answer from part 1, we have

p5(x) = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very straight-
forward to evaluate p5(1):

p5(1) = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
=

163

60
≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 4.
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Figure 4: A plot of f(x) = ex and its 5th degree Maclaurin polynomial p5(x).

�

Example 2.2. Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = lnx centered at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.
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Answer.

1. We begin by creating a table of derivatives of lnx evaluated at x = 1. While this
is not as straightforward as it was in the previous example, a pattern does emerge,
as shown below.
f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Using Definition 2.1, we have

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · ·+ f n(c)

n!
(x− c)n

= 0 + (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x− 1) terms turn out to be “nice.”

2. We can compute p6(x) using our work above:

p6(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 +

1

5
(x− 1)5 − 1

6
(x− 1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈ p6(1.5):

p6(1.5) = (1.5− 1)− 1

2
(1.5− 1)2 +

1

3
(1.5− 1)3 − 1

4
(1.5− 1)4 + · · ·

· · ·+ 1

5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259

640
≈ 0.404688.

This is a good approximation as a calculator shows that ln 1.5 ≈ 0.4055. Figure 5
plots y = lnx with y = p6(x). We can see that ln 1.5 ≈ p6(1.5).
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Figure 5: A plot of y = lnx and its 6th degree Taylor polynomial at x = 1.

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1

2
(2− 1)2 +

1

3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1

5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6

=
37

60
≈ 0.616667.

This approximation is not terribly impressive: a hand held calculator shows that
ln 2 ≈ 0.693147. The graph in Figure 5 shows that p6(x) provides less accurate
approximations of lnx as x gets close to 0 or 2.

Surprisingly enough, even the 20th degree Taylor polynomial fails to approximate
lnx for x > 2, as shown in Figure 6. We’ll soon discuss why this is.
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Figure 6: A plot of y = lnx and its 20th degree Taylor polynomial at x = 1.

�
Skip the rest of this section
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Theorem 2.1. Skip [Taylor’s Theorem]

1. Let f be a function whose n+ 1th derivative exists on an interval I and let c be in
I. Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n +Rn(x),

where Rn(x) =
f (n+1)(zx)

(n+ 1)!
(x− c)(n+1).

2.
∣∣Rn(x)

∣∣ ≤ max
z between c and x

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣(x− c)(n+1)
∣∣

�

Proof. Recall

f(c) = pn(c), f ′(c) = p′n(c), f ′′(c) = p′′n(c), . . . , f (n)(c) = p(n)n (c).

Let F (x) = f(x)− pn(x) and G(x) = (x− c)n+1. Then

F (c) = 0, F ′(c) = 0, F ′′(c) = 0, . . . , F (n)(c) = 0

and
G(c) = 0, G′(c) = 0, G′′(c) = 0, . . . , G(n)(c) = 0.

We apply Cauchy’s mean value theorem to F (x)−F (c)
G(x)−G(c)

= f(x)−pn(x)
(x−c)n with a = c and

b = x. Then there exists z1 between c and x such that

F (x)

G(x)
=
F (x)− F (0)

G(x)−G(0)
=
F ′(z1)

G′(z1)
.

We can use Cauchy’s theorem again. There exists z2 between c and z1 such that

F ′(z1)

G′(z2)
=
F ′(z1)− F ′(0)

G′(z1)−G′(0)
=
F ′′(z1)

G′′(z2)
.

We can repeat the above process n times.

F (x)

G(x)
=
F ′(z1)

G′(z1)
=
F ′′(z2)

G′′(z2)
=
F ′′′(z3)

G′′′(z3)
= · · · = F (n+1)(zn+1)

G(n+1)(zn+1)
,

where z1 is between c and x, z2 is between c and z1, etc. Let zx = zn+1. It is between c
and x. Note that

F (n+1)(z) = f (n+1)(z) and G(n+1)(z) = (n+ 1)!.
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Hence

F (x) = f(x)− pn(x) =
F (n+1)(zx)

(n+ 1)!
(x− c)n+1 =

f (n+1)(zx)

(n+ 1)!
(x− c)n+1

for some zx between c and x.
The other result follows easily.

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where pn(x)
is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in the Taylor
approximation. The second part gives bounds on how big that error can be. If the
(n+ 1)th derivative is large, the error may be large; if x is far from c, the error may also
be large. However, the (n+ 1)! term in the denominator tends to ensure that the error
gets smaller as n increases.

The following example computes error estimates for the approximations of ln 1.5 and
ln 2 made in Example 2.2.

Example 2.3. Skip
Finding error bounds of a Taylor polynomial

Use Theorem 2.1 to find error bounds when approximating ln 1.5 and ln 2 with p6(x), the
Taylor polynomial of degree 6 of f(x) = ln x centered at x = 1, as calculated in Example
2.2.

Answer.

1. We start with the approximation of ln 1.5 with p6(1.5). The theorem references an
open interval I that contains both x and c. The smaller the interval we use the
better; it will give us a more accurate (and smaller!) approximation of the error.
We let I = (0.9, 1.6), as this interval contains both c = 1 and x = 1.5.

The theorem references max
∣∣f (n+1)(z)

∣∣. In our situation, this is asking “How big

can the 7th derivative of y = lnx be between 1 and 1.5”? The seventh derivative is
y = −6!/x7. The largest value it attains at x = 1. Thus we can bound the error as:

∣∣R6(1.5)
∣∣ ≤ max

z∈[1,1.5]

∣∣f (7)(z)
∣∣

7!

∣∣(1.5− 1)7
∣∣

≤ 6!

7!
· 1

27

≈ 0.0011.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈ 0.405465, so
the actual error is about 0.000778, which is less than our bound of 0.0011. This
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affirms Taylor’s Theorem; the theorem states that our approximation would be
within about 2 thousandths of the actual value, whereas the approximation was
actually closer.

2. The maximum value of the seventh derivative of f on this [1, 2] occurs at z = 1.

∣∣R6(2)
∣∣ ≤ max

∣∣f (7)(z)
∣∣

7!

∣∣(2− 1)7
∣∣

≤ 1

7
· 17

≈ 0.14286.

This bound is not as nearly as good as before. Using the degree 6 Taylor polynomial
at x = 1 will bring us within 0.3 of the correct answer. As p6(2) ≈ 0.61667,
our error estimate guarantees that the actual value of ln 2 is somewhere between
0.61667 − 0.14286 = 0.47381 and 0.61667 + 0.14286 = 0.75953. These bounds are
not particularly useful.

In reality, our approximation was only off by about 0.07. However, we are approx-
imating ostensibly because we do not know the real answer. In order to be assured
that we have a good approximation, we would have to resort to using a polynomial
of higher degree.

�

Example 2.4. Skip
Finding sufficiently accurate Taylor polynomials

Find n such that the nth Taylor polynomial of f(x) = cosx centered at x = 0 approxi-
mates cos 2 to within 0.001 of the actual answer. What is pn(2)?

Answer. Following Taylor’s theorem, we need bounds on the size of the derivatives of
f(x) = cosx. In the case of this trigonometric function, this is easy. All derivatives of
cosine are ± sinx or ± cosx. In all cases, these functions are never greater than 1 in
absolute value. We want the error to be less than 0.001. To find the appropriate n,
consider the following inequalities:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣(2− 0)(n+1)
∣∣ ≤ 0.001

1

(n+ 1)!
· 2(n+1) ≤ 0.001

We find an n that satisfies this last inequality with trial–and–error. When n = 8, we

have
28+1

(8 + 1)!
≈ 0.0014; when n = 9, we have

29+1

(9 + 1)!
≈ 0.000282 < 0.001. Thus we
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want to approximate cos 2 with p9(2).

We now set out to compute p9(x). We again need a table of the derivatives of
f(x) = cos x evaluated at x = 0. A table of these values is given below.

f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sinx ⇒ f ′(0) = 0
f ′′(x) = − cosx ⇒ f ′′(0) = −1
f ′′′(x) = sinx ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sinx ⇒ f (5)(0) = 0
f (6)(x) = − cosx ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sinx ⇒ f (9)(0) = 0

Notice how the derivatives, evaluated at x = 0, follow a certain pattern. All the odd
powers of x in the Taylor polynomial will disappear as their coefficient is 0. While our
error bounds state that we need p9(x), our work shows that this will be the same as
p8(x).

Since we are forming our polynomial centered at x = 0, we are creating a Maclaurin
polynomial, and:

p8(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (8)

8!
x8

= 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131

315
≈ −0.41587.

Our error bound guarantee that this approximation is within 0.001 of the correct answer.
Technology shows us that our approximation is actually within about 0.0003 of the
correct answer.

Figure 7 shows a graph of y = p8(x) and y = cos x. Note how well the two functions
agree on about (−π, π).

�

Example 2.5. Skip
Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x centered at x = 4.

2. Use p4(x) to approximate
√

3.
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Figure 7: A graph of f(x) = cosx and its degree 8 Maclaurin polynomial.

3. Find bounds on the error when approximating
√

3 with p4(3).

Answer.

1. We begin by evaluating the derivatives of f at x = 4.

f(x) =
√
x ⇒ f(4) = 2

f ′(x) =
1

2
√
x

⇒ f ′(4) =
1

4

f ′′(x) =
−1

4x3/2
⇒ f ′′(4) =

−1

32

f ′′′(x) =
3

8x5/2
⇒ f ′′′(4) =

3

256

f (4)(x) =
−15

16x7/2
⇒ f (4)(4) =

−15

2048
These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2 +
1

4
(x− 4) +

−1/32

2!
(x− 4)2 +

3/256

3!
(x− 4)3 +

−15/2048

4!
(x− 4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. f (5)(x) = 105
32x9/2 . The largest value the fifth derivative of f(x) =

√
x for x between

3 and 4 is at x = 3, at about 0.023388. Thus∣∣R4(3)
∣∣ ≤ 0.023388

5!

∣∣(3− 4)5
∣∣ ≈ 0.0001949

This shows our approximation is accurate to at least the first 2 places after the
decimal. (It turns out that our approximation is actually accurate to 4 places after
the decimal.) A graph of f(x) =

√
x and p4(x) is given in Figure 8. Note how the

two functions are nearly indistinguishable on (2, 7).

�

12



.....

.. y =
√
x.

y = p4(x)

.
5

.
10

.

1

.

2

.

3

. x.

y

Figure 8: A graph of f(x) =
√
x and its degree 4 Taylor polynomial at x = 4.

3 Taylor Series

In the previous lectures, we showed how certain functions can be represented by a power
series function, e.g.

ex = 1 + x+
x2

2!
+ · · · ,

or
1

1− x
= 1 + x+ x2 + · · · .

In 2, we showed how we can approximate functions with polynomials, given that enough
derivative information is available. In this section we combine these concepts: if a
function f(x) is infinitely differentiable, we show how to represent it with a power series
function.

Definition 3.1 (Taylor and Maclaurin Series). Let f(x) have derivatives of all orders
at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)

n!
(x− c)n.

2. Setting c = 0 gives the Maclaurin Series of f(x):

∞∑
n=0

f (n)(0)

n!
xn.

�

The difference between a Taylor polynomial and a Taylor series is the former is a
polynomial, containing only a finite number of terms, whereas the latter is a series, a
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summation of an infinite set of terms. When creating the Taylor polynomial of degree
n for a function f(x) at x = c, we needed to evaluate f , and the first n derivatives
of f , at x = c. When creating the Taylor series of f , it helps to find a pattern that
describes the nth derivative of f at x = c. We demonstrate this in the next two examples.

Example 3.1. The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

Answer. In Example 2.4 we found the 8th degree Maclaurin polynomial of cosx. In
doing so, we created the table shown below: A table of the derivatives of f(x) = cos x
evaluated at x = 0.
f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sinx ⇒ f ′(0) = 0
f ′′(x) = − cosx ⇒ f ′′(0) = −1
f ′′′(x) = sinx ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sinx ⇒ f (5)(0) = 0
f (6)(x) = − cosx ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sinx ⇒ f (9)(0) = 0

Notice how f (n)(0) = 0 when n is odd, f (n)(0) = 1 when n is divisible by 4, and
f (n)(0) = −1 when n is even but not divisible by 4. Thus the Maclaurin series of cosx
is

1− x2

2
+
x4

4!
− x6

6!
+
x8

8!
− · · ·

We can go further and write this as a summation. Since we only need the terms where
the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

�

Example 3.2. The Taylor series of f(x) = lnx at x = 1
Find the Taylor series of f(x) = lnx centered at x = 1.

Answer. The table below shows the nth derivative of lnx evaluated at x = 1 for
n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what distinguishes Taylor series from Taylor polynomials; we
are very interested in finding a pattern for the nth term, not just finding a finite set of
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coefficients for a polynomial. The table below shows the derivatives of ln x evaluated at
x = 1.
f(x) = lnx ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Since f(1) = ln 1 = 0, we skip the first term and start the summation with n = 1,
giving the Taylor series for lnx, centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1

n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

�
Skip till Example 3.5

It is important to note that Definition 3.1 defines a Taylor series given a function
f(x); however, we cannot yet state that f(x) is equal to its Taylor series. We will find
that “most of the time” they are equal, but we need to consider the conditions that
allow us to conclude this.

Theorem 2.1 states that the error between a function f(x) and its nth–degree Taylor
polynomial pn(x) is Rn(x), where

∣∣Rn(x)
∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣(x− c)(n+1)
∣∣.

If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we conclude
that the function is equal to its Taylor series expansion.

Theorem 3.1 (Function and Taylor Series Equality). Skip Let f(x) have derivatives
of all orders at x = c, let Rn(x) be as stated in Theorem 2.1, and let I be an interval on
which the Taylor series of f(x) converges. If lim

n→∞
Rn(x) = 0 for all x in I, then

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n on I.

�
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We demonstrate the use of this theorem in an example.

Example 3.3. Establishing equality of a function and its Taylor series
Show that f(x) = cos x is equal to its Maclaurin series, as found in Example 3.1, for all
x.

Answer. Given a value x, the magnitude of the error term Rn(x) is bounded by

∣∣Rn(x)
∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣xn+1
∣∣.

Since all derivatives of cosx are ± sinx or ± cosx, whose magnitudes are bounded by 1,
we can state ∣∣Rn(x)

∣∣ ≤ 1

(n+ 1)!

∣∣xn+1
∣∣

which implies

− |x
n+1|

(n+ 1)!
≤ Rn(x) ≤ |xn+1|

(n+ 1)!
. (1)

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Applying the Squeeze Theorem to Equation (1), we

conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
for all x.

�
It is natural to assume that a function is equal to its Taylor series on the series’

interval of convergence, but this is not the case. In order to properly establish equality,
one must use Theorem 3.1.

Example 3.4. Skip
Establishing equality of a function and its Taylor series
Show that f(x) = ln x is equal to its Taylor series centered at x = 1, as found in Example
3.2, for all x ∈ (0.5, 2).
Remark: The Taylor series converges on (0, 2) but we can’t prove this by our technique
in this section.

Answer. Recall f (n)(x) = (−1)n+1(n−1)!
xn . Given a value x ∈ (0.5, 2), the magnitude of

the error term Rn(x) is bounded by

∣∣Rn(x)
∣∣ ≤ max

z between x and 1.

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣(x− 1)n+1
∣∣

16



=

(
max

z between x and 1.

1

(n+ 1)zn+1

) ∣∣(x− 1)n+1
∣∣.

If x ≥ 1,

max
z between x and 1.

1

(n+ 1)zn+1
=

1

n+ 1
.

Then ∣∣Rn(x)
∣∣ ≤ (x− 1)n+1

n+ 1
.

Because 1 > |x− 1|, lim
n→∞

∣∣Rn(x)
∣∣ = 0.

For 0.5 < x < 1,

max
z between x and 1.

1

(n+ 1)zn+1
=

1

(n+ 1)xn+1
.

Then ∣∣Rn(x)
∣∣ ≤ 1

n+ 1

∣∣∣∣1− 1

x

∣∣∣∣n+1

.

Again, because ∣∣∣∣1− 1

x

∣∣∣∣ < 1.

We can show that lim
n→∞

1

n+ 1

∣∣∣∣1− 1

x

∣∣∣∣n+1

= 0.

Combining all this,
lim
n→∞

∣∣Rn(x)
∣∣ = 0.

�
We develop the Taylor series for one more important function, then give a table of

the Taylor series for a number of common functions.

Example 3.5. Skip The Binomial Series Find the Maclaurin series of f(x) = (1 +
x)k, k 6= 0.

Answer. When k is a positive integer, the Maclaurin series is finite. For instance, when
k = 4, we have

f(x) = (1 + x)4 = 1 + 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a positive integer are known as the binomial coefficients,
giving the series we are developing its name.

When k = 1/2, we have f(x) =
√

1 + x. Knowing a series representation of this
function would give a useful way of approximating

√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1+x)k for any value of k 6= 0, we consider
the derivatives of f evaluated at x = 0:

17



f(x) = (1 + x)k f(0) = 1

f ′(x) = k(1 + x)k−1 f ′(0) = k

f ′′(x) = k(k − 1)(1 + x)k−2 f ′′(0) = k(k − 1)

f ′′′(x) = k(k − 1)(k − 2)(1 + x)k−3 f ′′′(0) = k(k − 1)(k − 2)

...
...

f (n)(x) = k(k − 1) · · ·
(
k − (n− 1)

)
(1 + x)k−n f (n)(0) = k(k − 1) · · ·

(
k − (n− 1)

)
Thus the Maclaurin series for f(x) = (1 + x)k is

1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + . . .+

k(k − 1) · · ·
(
k − (n− 1)

)
n!

xn + . . .

The error term

Rn+1(x) =
k(k − 1) · · · (k − n)

(n+ 1)!
zn+1

for some z between 0 and x. Then

|Rn+1(x)| ≤
∣∣∣∣k(k − 1) · · · (k − n)

(n+ 1)!

∣∣∣∣ |x|n+1.

We can show that for |x| < 1, the RHS tends to 0 as n→∞.
�

In below are some common Taylor series (Skip the interval of convergence)

18



Function and Series First Few Terms

Interval
of

Convergence
(skip)

ex =
∞∑
n=0

xn

n!
1 + x+

x2

2!
+
x3

3!
+ · · · (−∞,∞)

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+
x5

5!
− x7

7!
+ · · · (−∞,∞)

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
1− x2

2!
+
x4

4!
− x6

6!
+ · · · (−∞,∞)

lnx =
∞∑
n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1

1− x
=
∞∑
n=0

xn 1 + x+ x2 + x3 + · · · (−1, 1)

(1 + x)k =

∞∑
n=0

k(k − 1) · · ·
(
k − (n− 1)

)
n!

xn 1 + kx+
k(k − 1)

2!
x2 + · · · (−1, 1)

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+
x5

5
− x7

7
+ · · · [−1, 1]

Theorem 3.2 (Algebra of Power Series). Let f(x) =
∞∑
n=0

an(x − c)n and g(x) =

∞∑
n=0

bn(x− c)n be the Taylor series centered at x = c. and let h(x) be continuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)(x− c)n

2. f(x)g(x) =

(
∞∑
n=0

an(x− c)n
)(

∞∑
n=0

bn(x− c)n
)

=
∞∑
n=0

(
a0bn + a1bn−1 + . . . anb0

)
(x− c)n.

3. f
(
h(x)

)
=
∞∑
n=0

an
(
h(x)− c

)n
.
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�

Example 3.6. Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = ex cosx using table above and
Theorem 3.2.

Answer. We can compute all the derivatives of ex cosx and compute the Taylor series
directly but this method is very slow (try it as an exercise). Instead we use Theorem 3.2

The above table informs us that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · and cosx = 1− x2

2!
+
x4

4!
+ · · · .

Applying Theorem 3.2, we find that

ex cosx =

(
1 + x+

x2

2!
+
x3

3!
+ · · ·

)(
1− x2

2!
+
x4

4!
+ · · ·

)
.

Distribute the right hand expression across the left:

= 1

(
1− x2

2!
+
x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+
x4

4!
+ · · ·

)
+
x2

2!

(
1− x2

2!
+
x4

4!
+ · · ·

)
+
x3

3!

(
1− x2

2!
+
x4

4!
+ · · ·

)
+
x4

4!

(
1− x2

2!
+
x4

4!
+ · · ·

)
+ · · ·

Distribute again and collect like terms.

= 1 + x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

�

Example 3.7. Creating new Taylor series
Use Theorem 3.2 to create series for y = sin(x2).

Answer. We can compute all the derivatives of sin(x2) and compute the Taylor series
directly but this method is very slow (try it as an exercise). Instead we use Theorem 3.2

Given that

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

we simply substitute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+
x10

5!
− x14

7!
· · · .

�
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Theorem 3.3 (differentiation of the Power Series). Let f(x) =
∞∑
n=0

an(x − c)n. be the

Taylor series centered at x = c.

1. The Taylor series of f ′(x) centered at x = c is

∞∑
n=1

nan(x− c)n−1.

2. Suppose F (x) is an antiderivative of f(x), i.e., F ′(x) = f(x). Then the Taylor
series of F (x) centered at x = c is

F (0) +
∞∑
n=0

an
n+ 1

(x− c)n+1.

�

Example 3.8. Find the Maclaurin series of arctan(x).

Answer. We can find the all the derivative of arctan(x) but it will be very slow. (try
it!) Instead we use the above theorem.

d

dx
arctanx =

1

1 + x2
.

The Taylor series of 1
1+x2 is

1− x2 + x4 − x6 + · · · .
Because arctan(x) is an antiderivative of 1

1+x2 and arctan(0) = 0. The Taylor series of
arctan(x) is therefore

arctan(x) = x− x3

3
+
x5

5
− x7

7
+ · · · .

�
Interesting formula for π: Let x = 1 in the above formula

π

4
= arctan 1 = 1− 1

3
+

1

5
− 1

7
+ · · · .

The convergence rate of the above formula for π is very slow. To compute π correct
to 3 decimal places, we need 4000 terms! Here is a better formula given by Chudnovsky
brothers.

1

π
=

12

6403203/2

∞∑
k=0

(6k)!(13591409 + 545140134k)

(3k)!(k!)3(−640320)3k
.

Each new term gives about 14 new digits of π!
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4 More examples

Example 4.1. Find the Taylor series of 1
(x−2)(x−3) centered at x = 1.

Answer.
1

(x− 2)(x− 3)
=

1

x− 3
− 1

x− 2

=
−1

2− (x− 1)
+

1

1− (x− 1)
=
−1

2

1

1− x−1
2

+
1

1− (x− 1)

= −1

2

∞∑
n=0

1

2n
(x− 1)n +

∞∑
n=0

(x− 1)n

=
∞∑
n=0

(1− 1

2n+1
)(x− 1)n.

�

Example 4.2. Find the degree 4 Taylor series of secx and tanx centered at x = 0.

Answer. First of all secx is an even function, so the coefficient of the odd degree term
of the Taylor series is 0. Hence the degree 4 Taylor series of sec x centered at x = 0 is

a0 + a2x
2 + a4x

4.

Next
secx cosx = 1.

Now

(a0+a2x
2+a4x

4)(1−x
2

2!
+
x4

4!
) = a0+(a2−

a0
2!

)x2+(a4−
a2
2!

+
a0
4!

)x4+(terms with degree > 4).

Therefore
a0 = 1

a2 −
a0
2!

= 0.

So

a2 =
1

2
.

a4 −
a2
2!

+
a0
4!

= 0.

So

a4 =
1

4
− 1

24
=

5

24
.
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Hence degree 4 Taylor series of secx centered at x = 0 is

1 +
x2

2
+

5x4

24
.

Next
tanx = sinx secx

= (x− x3

3!
+ (terms with degree > 4))(1 +

x2

2
+

5x4

24
+ (terms with degree > 4)).

x+
x3

3
+ terms with degree > 4.

Hence degree 4 Taylor series of tanx centered at x = 0 is

x+
x3

x
.

�
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