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Lecture 14: The mean value theorem
Charles Li

1 The mean value theorems

Theorem 1.1 (The extreme value theorem). If f is continuous on a closed interval
la,b], then f attains both an absolute max and absolute minimum value in |a, b]. |

The proof is difficult. So we will skip the proof.
Recall the following

Proposition 1.1. If f is continuous on a closed interval [a,b], and differentiable on
(a,b). If f attains mazimum or minimum at © = ¢, then f'(c) = 0. |

Proof. Without loss of generality, we can assume f(c) is the absolute maximum, so for
very h > 0, f(c+ h) < f(c). Hence

flet+h) = [l

fle) = hli}r(r)h h =0.
Similarly for h < 0, f(c+h) < f(c).
o = i LW S0

Hence f'(c) = 0. O
Theorem 1.2 (Rolle’s theorem). Suppose f is a function on [a,b] and satisfies the

following conditions

1. f(z) is continuous on [a,b].

2. f(z) is differentiable on (a,b).

3. f(a) = f(b).
Then there ezists ¢ € (a,b), such that f'(c) = 0.
Remark: pay attention to whether we use |a,b] or (a,b). |

f(a)=f(b)

a c b

Proof. By the extreme value theorem, f attains both maximum and minimum values on
la,b].

If both absolute maximum and absolute minimum attains on the end points z = a
and x = b, then the function is a constant function since f(a) = f(b). So f'(z) = 0 for
all x € [a,b]. The theorem is trivial for this case. So we can at least one extreme value
attains at ¢ € (a,b). So f'(c) = 0. O



Example 1.1. Let f(z) = z* — 23 + 1. Show that there exists a number ¢ € (0,1) such
that f'(c) = 0. |

Answer. f(z) is continuous on [0, 1], differentiable on (0,1). Also f(0) =1 = f(1). So
there exists ¢ € (0, 1) such that f'(c) = 0.
In fact

f'(e) =4c* — 3¢ = 0.

So we can take

3
c=—.
4
|

Theorem 1.3 (Mean value theorem). Suppose f is a function on |a,b] and satisfies the
following conditions

1. f(z) is continuous on [a,b].
2. f(z) is differentiable on (a,b).
Then there ezists ¢ € (a,b), such that

EIUES(C]
|

Remark: If f(a) = f(b), then f(bg:a(“) = 0. So Rolle’s theorem is a special case for
mean value theorem.

Proof. Let
@) = f(@) ~ fl) - 1O T
The g(x) satisfies the conditions of Rolle’s theorem:
1. g(z) is continuous on [a, b].

2. g(x) is differentiable on (a,b).



f(0) — f(a)

y g (0—a)=f() = fla) = (f(b) — f(a)) =0.

Hence g(a) = g(b).
Therefore by Rolle’s theorem, there exists ¢ € (a, b) such that g(c) =0, i.e.

, f() = fla)
SRRSO A A7
fey - =1
oy J(b) = fla)
f (C) - b—a .
]
Example 1.2. a =1, b =2, f(x) = z*. Then there exists ¢ € (1,2) such that
, 22 _ 12
f(e) = S 3.
In fact, 2¢ = 3, so ¢ = 1.5. [ |

Theorem 1.4 (Cauchy’s mean value theorem). Suppose f, g are functions on [a,b] and
satisfies the following conditions

1. f(z), g(x) are continuous on [a,b].
2. f(x), g(x) are differentiable on (a,b).
3. g(a) # g(b).
4. ¢'(c) #0 for c € (a,b).

Then there ezists ¢ € (a,b), such that

f'(e) _ fb) = f(a)

g(c)  gb)—gla)

Proof. Let

Then h is continuous on [a, b] and differentiable on (a,b). Obviously h(a) = h(b) = 0.
Hence there exists ¢ € (a,b) such that

h'(c)=0
/ _f(b)_fa)/C:
PO @ =g ="
Flo) _ £(b) ~ fla)




2 Applications

Example 2.1. Show that
|sinz — siny| < |z — y|

Answer. When x = y, the result is trivial. Suppose x > y. By the mean value theorem,
there exists ¢ € (y,x) such that

sinx — siny

P f'(¢) = cosc

sinz — siny = cosc(z — y).

Therefore
|sinx — siny| = |cosc|lz — y| < |z —yl.
[ |
Example 2.2. Let n > 0. Prove the following inequality
1 1
— < vVn+1—vy/n< ——.
2vn+1 "~ Vi < 2\/n
[ |

Answer. In the mean value theorem, let f(x) = v/z, a = n, b = n+1, then there exists

¢ € (n,n + 1) such that

VA= Vi = fe) = 5=

1 1 1
< < .
2vn+1 7" 2y/c ™ 2¢y/n

Because ¢ € (n,n+ 1),

So
1 1
< Vn+l-vn< —.
2vn+1 "~ " = 2\/n
|
Proposition 2.1. If f(x) is differentiable on (a,b) and f'(x) = 0 for all x € (a,b).
Then f is a constant function. [ |

Proof. Let zy € (a,b). For any x € (a,b), by the the mean value theorem there exists ¢
between xg and x such that

J(@) = flzo)

= f'(c) = 0.

Hence f(z) = f(xg) for any = € (a,b). So f(x) is a constant function. O

Proposition 2.2. Suppose f(x) is continuous on [a,b], differentiable on (a,b). Suppose
further that f'(x) > 0 (resp. f'(x) <0) on (a,b), then f(z) is a strictly increasing (resp.
decreasing) function. [ |



Proof. Suppose f'(x) for z € (a,b). Let 1,25 € [a,b] and suppose x; < xo. Then by
the mean value theorem, there exists ¢ € (z1,x2) such that

f(l'2) — f(z1)

To — X1

= f'(c) > 0.

Hence

f(z2) = f(z1) >0
f(z2) > f(x1).



