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Lecture 14: The mean value theorem

Charles Li

1 The mean value theorems

Theorem 1.1 (The extreme value theorem). If f is continuous on a closed interval
[a, b], then f attains both an absolute max and absolute minimum value in [a, b]. �

The proof is difficult. So we will skip the proof.
Recall the following

Proposition 1.1. If f is continuous on a closed interval [a, b], and differentiable on
(a, b). If f attains maximum or minimum at x = c, then f ′(c) = 0. �

Proof. Without loss of generality, we can assume f(c) is the absolute maximum, so for
very h > 0, f(c + h) ≤ f(c). Hence

f ′(c) = lim
h→0+

f(c + h)− f(c)

h
≤ 0.

Similarly for h < 0, f(c + h) ≤ f(c).

f ′(c) = lim
h→0−

f(c + h)− f(c)

h
≥ 0.

Hence f ′(c) = 0.

Theorem 1.2 (Rolle’s theorem). Suppose f is a function on [a, b] and satisfies the
following conditions

1. f(x) is continuous on [a, b].

2. f(x) is differentiable on (a, b).

3. f(a) = f(b).

Then there exists c ∈ (a, b), such that f ′(c) = 0.
Remark: pay attention to whether we use [a, b] or (a, b). �

Proof. By the extreme value theorem, f attains both maximum and minimum values on
[a, b].

If both absolute maximum and absolute minimum attains on the end points x = a
and x = b, then the function is a constant function since f(a) = f(b). So f ′(x) = 0 for
all x ∈ [a, b]. The theorem is trivial for this case. So we can at least one extreme value
attains at c ∈ (a, b). So f ′(c) = 0.
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Example 1.1. Let f(x) = x4 − x3 + 1. Show that there exists a number c ∈ (0, 1) such
that f ′(c) = 0. �

Answer. f(x) is continuous on [0, 1], differentiable on (0, 1). Also f(0) = 1 = f(1). So
there exists c ∈ (0, 1) such that f ′(c) = 0.
In fact

f ′(c) = 4c3 − 3c2 = 0.

So we can take

c =
3

4
.

�

Theorem 1.3 (Mean value theorem). Suppose f is a function on [a, b] and satisfies the
following conditions

1. f(x) is continuous on [a, b].

2. f(x) is differentiable on (a, b).

Then there exists c ∈ (a, b), such that

f ′(c) =
f(b)− f(a)

b− a
.

�

Remark: If f(a) = f(b), then f(b)−f(a)
b−a = 0. So Rolle’s theorem is a special case for

mean value theorem.

Proof. Let

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

The g(x) satisfies the conditions of Rolle’s theorem:

1. g(x) is continuous on [a, b].

2. g(x) is differentiable on (a, b).
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3.

g(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0

and

g(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = f(b)− f(a)− (f(b)− f(a)) = 0.

Hence g(a) = g(b).

Therefore by Rolle’s theorem, there exists c ∈ (a, b) such that g(c) = 0, i.e.

f ′(c)− f(b)− f(a)

b− a
= 0

f ′(c) =
f(b)− f(a)

b− a
.

Example 1.2. a = 1, b = 2, f(x) = x2. Then there exists c ∈ (1, 2) such that

f ′(c) =
22 − 12

2− 1
= 3.

In fact, 2c = 3, so c = 1.5. �

Theorem 1.4 (Cauchy’s mean value theorem). Suppose f, g are functions on [a, b] and
satisfies the following conditions

1. f(x), g(x) are continuous on [a, b].

2. f(x), g(x) are differentiable on (a, b).

3. g(a) 6= g(b).

4. g′(c) 6= 0 for c ∈ (a, b).

Then there exists c ∈ (a, b), such that

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.

�

Proof. Let

h(x) = f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)).

Then h is continuous on [a, b] and differentiable on (a, b). Obviously h(a) = h(b) = 0.
Hence there exists c ∈ (a, b) such that

h′(c) = 0

f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c) = 0

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.
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2 Applications

Example 2.1. Show that
| sinx− sin y| ≤ |x− y|

�

Answer. When x = y, the result is trivial. Suppose x > y. By the mean value theorem,
there exists c ∈ (y, x) such that

sinx− sin y

x− y
= f ′(c) = cos c

sinx− sin y = cos c(x− y).

Therefore
| sinx− sin y| = | cos c||x− y| ≤ |x− y|.

�

Example 2.2. Let n > 0. Prove the following inequality

1

2
√
n + 1

≤
√
n + 1−

√
n ≤ 1

2
√
n
.

�

Answer. In the mean value theorem, let f(x) =
√
x, a = n, b = n+ 1, then there exists

c ∈ (n, n + 1) such that
√
n + 1−

√
n = f ′(c) =

1

2
√
c
.

Because c ∈ (n, n + 1),
1

2
√
n + 1

≤ 1

2
√
c
≤ 1

2
√
n
.

So
1

2
√
n + 1

≤
√
n + 1−

√
n ≤ 1

2
√
n
.

�

Proposition 2.1. If f(x) is differentiable on (a, b) and f ′(x) = 0 for all x ∈ (a, b).
Then f is a constant function. �

Proof. Let x0 ∈ (a, b). For any x ∈ (a, b), by the the mean value theorem there exists c
between x0 and x such that

f(x)− f(x0)

x− x0

= f ′(c) = 0.

Hence f(x) = f(x0) for any x ∈ (a, b). So f(x) is a constant function.

Proposition 2.2. Suppose f(x) is continuous on [a, b], differentiable on (a, b). Suppose
further that f ′(x) > 0 (resp. f ′(x) < 0) on (a, b), then f(x) is a strictly increasing (resp.
decreasing) function. �
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Proof. Suppose f ′(x) for x ∈ (a, b). Let x1, x2 ∈ [a, b] and suppose x1 < x2. Then by
the mean value theorem, there exists c ∈ (x1, x2) such that

f(x2)− f(x1)

x2 − x1

= f ′(c) > 0.

Hence
f(x2)− f(x1) > 0

f(x2) > f(x1).
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