
2017-18 MATH1010
Lecture 13: Implicit functions and differentiation.

Charles Li

1 Implicit function

The function we have worked with so far have all been given by equations of the form
y = f(x) in which the dependent variable y on the left is given explicitly by an expression
on the right involving the independent variable x. A function in this form is said to be
in explicit form. For example, the functions

y = x2 + 4x y =
x4 + 3

x2 − 1
or y =

√
1− x2

are all functions in explicit form.

Unfortunately, certain equations in x and y, such as

x2y3 + 5y2 = 1− x3 or x2y − 6 = 3x + 2y

either cannot be solved explicitly for y in terms of x or can be done so only with great
effort.

Figure 1: Mathematician’s love: (x2 + y2 − 1)3 = x2y3. wolframalpha.com: plot (x^2 + y^2 -

1)^3 = x^2 y^3

Example 1.1. Discuss the curve x2 + y2 = 25. �

Answer. Solve y in terms of x, we have y = ±
√

25− x2 for x ∈ [−5, 5]. We see from
the formula that y is not uniquely determined by x. So we cannot say y is a function of
x. Refer to the graph of example 2.2.

1. Consider (3, 4) on the curve and restrict to a small neighbourhood of the point
(3, 4) on the curve. y can be uniquely given by y =

√
25− x2.

2. Similarly if we consider the neighbourhood of (3,−4) on the curve, then y can be
given by y = −

√
25− x2.
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3. However, if we consider the neighbourhood of (5, 0) on the curve, then y cannot be
expressed by a function of x.

�
Observation.

1. For some points (x0, y0) on the curve, we can find a small neighbourhood, such
that the curve inside the neighbourhood is actually a graph. So y can be given by
y = f(x) when x is in a small neighbourhood of x0.

2. But for some point (x0, y0) on the curve, we cannot find a small neighbourhood of
(x0, y0) such that the curve inside the neighbourhood is a graph.

Theorem 1.1. (can be skipped, read the short version below) Suppose F (x, y)
is a function with two variables. Let C be the curve F (x, y) = 0. Suppose (x0, y0) is in
C, i.e., F (x0, y0) = 0, Except for few exceptions, there exists a small neighbourhood of
(x0, y0), such that the intersection of the curve and the neighbourhood is a graph. That
is, if x is in a small neighborhood of x0, then y = f(x) is on the curve C:

F (x, f(x)) = 0.

�

Short version of the above theorem
Let F (x, y) be a functions (usually polynomials). Let C be the curve F (x, y) = 0. We
can assume y can be expressed as f(x), i.e. F (x, f(x)) = 0. �

2 Implicit differentiation

Suppose you have an equation that defines y implicitly in terms of x and you want to find
the derivative dy

dx
, how should you proceed? The answer is provided by a method called

implicit differentiation, which consists of differentiating both sides of the defining
equation with respect to x and then solving algebraically for dy

dx
.

Example 2.1. Suppose y = f(x) is a differentiable function of x that satisfies the
equation x2y + y2 = x3. Find the derivative dy

dx
. �

Answer. You are going to differentiate both sides of the given equation with respect to
x. So that you will not forget that y is actually a function of x. Temporarily replace y
by f(x)and begin by rewriting the equation as

x2f(x) + (f(x))2 = x3.

Now differentiate both sides of this equation term by term with respect to x:

d

dx
[x2f(x) + (f(x))2] =

d

dx
[x3][

x2 df

dx
+ f(x)

d

dx
(x2)

]
+ 2f(x)

df

dx
= 3x2

(1)
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Thus, we have

x2 df

dx
+ f(x)(2x) + 2f(x)

df

dx
= 3x2

[x2 + 2f(x)]
df

dx
= 3x2 − 2xf(x)

dy

dx
=

3x2 − 2xf(x)

x2 + 2f(x)
.

(2)

Finally, replace f(x) by y to get

dy

dx
=

3x2 − 2xy

x2 + 2y
.

�
Remark: Temporarily replacing y by f(x) as in Example 2.1 is a useful device for
illustrating the implicit differentiation process, but as soon as you feel comfortable with
the technique, try to leave out this unnecessary step and differentiate across the equation
directly. Just keep in mind that y is really a function of x, and remember to use the
chain rule when it is appropriate.

Implicit Differentiation Procedure

Suppose an equation defines y implicitly as a differentiable function of x. To find
dy

dx
:

1. Differentiate both sides of the equation with respect to x. Remember that y is
really a function of x, and use the chain rule when differentiating terms containing
y.

2. Solve the differentiated equation algebraically for
dy

dx
in terms of x and y.

Example 2.2. Find the slope of the tangent line to the circle x2 + y2 = 25 at the point
(3, 4). What is the slope at the point (3,−4)? �

Answer. Differentiating both sides of the equation x2 + y2 = 25 with respect to x, you
get

2x + 2y
dy

dx
= 0

dy

dx
= −x

y

The slope at (3, 4) is the value of the derivative when x = 3 and y = 4:

dy

dx

∣∣∣∣
(3,4)

= −x

y

∣∣∣∣
x=3
y=4

= −3

4

Similarly, the slope at (3,−4) is the value of
dy

dx
when x = 3 and y = −4:

dy

dx

∣∣∣∣
(3,−4)

= −x

y

∣∣∣∣
x=3
y=−4

= − 3

−4
=

3

4

The graph of the circle is shown together with the tangent lines at (3, 4) and (3,−4).
�
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Example 2.3. Consider the curve defined by

x3 + y3 = 9xy.

1. Compute dy
dx

.

2. Find the slope of the tangent line at (4, 2).

�
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Figure 2: A plot of x3 + y3 = 9xy. While this is not a function of y in terms of x, the equation still
defines a relation between x and y.

Answer. Starting with
x3 + y3 = 9xy,

we apply the differential operator d
dx

to both sides of the equation to obtain

d

dx

(
x3 + y3

)
=

d

dx
9xy.

Applying the sum rule we see

d

dx
x3 +

d

dx
y3 =

d

dx
9xy.
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Let’s examine each of these terms in turn. To start

d

dx
x3 = 3x2.

On the other hand d
dx
y3 is somewhat different. Here you imagine that y = y(x), and

hence by the chain rule

d

dx
y3 =

d

dx
(y(x))3

= 3(y(x))2 · y′(x)

= 3y2
dy

dx
.

Considering the final term d
dx

9xy, we again imagine that y = y(x). Hence

d

dx
9xy = 9

d

dx
x · y(x)

= 9 (x · y′(x) + y(x))

= 9x
dy

dx
+ 9y.

Putting this all together we are left with the equation

3x2 + 3y2
dy

dx
= 9x

dy

dx
+ 9y.

At this point, we solve for dy
dx

. Write

3x2 + 3y2
dy

dx
= 9x

dy

dx
+ 9y

3y2
dy

dx
− 9x

dy

dx
= 9y − 3x2

dy

dx

(
3y2 − 9x

)
= 9y − 3x2

dy

dx
=

9y − 3x2

3y2 − 9x
=

3y − x2

y2 − 3x
.

For the second part of the problem, we simply plug x = 4 and y = 2 into the formula
above, hence the slope of the tangent line at (4, 2) is 5

4
, see Figure 3. �

You might think that the step in which we solve for dy
dx

could sometimes be difficult—
after all, we’re using implicit differentiation here instead of the more difficult task of
solving the equation x3 + y3 = 9xy for y, so maybe there are functions where after
taking the derivative we obtain something where it is hard to solve for dy

dx
. In fact, this

never happens. All occurrences dy
dx

arise from applying the chain rule, and whenever the

chain rule is used it deposits a single dy
dx

multiplied by some other expression. Hence our

expression is linear in dy
dx

, it will always be possible to group the terms containing dy
dx

together and factor out the dy
dx

, just as in the previous example.
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Figure 3: A plot of x3 + y3 = 9xy along with the tangent line at (4, 2).
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