2017-18 MATH1010 Lecture 12: Inverse functions and derivatives Charles Li

1 Inverse function

Definition 1.1. Let f be a function, an inverse function g is a function such that

$$f(g(x)) = x, g(f(x)) = x.$$

The inverse function g is usually denoted by f^{-1} Remark $f^{-1}(x)$ is not $\frac{1}{f(x)}$.

Figure 1: The graphs of y = f(x) and $y = f^{-1}(x)$. The dotted line is y = x.

Remark. We should specific the domain and the range. But let's assume that both functions are on \mathbf{R} first.

Example 1.1. y = f(x) = 2x + 3. Then, solving for x

$$x = \frac{y-3}{2}.$$

We can take $g(x) = \frac{x-3}{2}$.

Example 1.2. $y = f(x) = x^3$. Solving for x in terms of y, we have $x = \sqrt[3]{y}$. We can take $g(x) = \sqrt[3]{x}$.

Let's specific the domain and range.

Example 1.3. $f : [0, \infty) \to \mathbf{R}$ defined by $f(x) = x^2$. Then the inverse is g(x) is a function on $[0, \infty)$ defined by $g(x) = \sqrt{x}$. However, if we define $f : (-\infty, \infty) \to \mathbf{R}$ as $f(x) = x^2$. Then the inverse of f(x) does not exists because for every $y \neq 0$, both $f(\sqrt{x})$ and $f(-\sqrt{x})$ give us y.

Observation. The existence of inverse function depends on the domain of the function.

Example 1.4. $f : \mathbf{R} \to \mathbf{R}$, $f(x) = \sin(x)$. This function has no inverse as f(x) = 0 if $x = n\pi$ for any integer n. However if we restrict the domain of $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \to R$. It is a strictly increasing function. sin y = x has a unique solution if $x \in [-1, 1]$ So there exists an inverse function $g: [-1, 1] \to \mathbf{R}$. We cannot give an explicit formula, but we denote the inverse g(x) as $\arcsin(x)$ or $\sin^{-1}(x)$ (do not mistaken the latter as $\frac{1}{\sin x}$.)

Figure 2: $y = \sin x, x \in [-3\pi, 3\pi]$

Observation. The domain of the inverse function depends on the image of f, i.e. depends on the set $\{f(x)\}$.

Recall the following result

Theorem 1.1. Given a < b. Let I = (a, b) (or [a, b), (a, b], [a, b]). Let f be a function on I. Suppose

- 1. f is continuous on I.
- 2. f is differentiable on (a, b) (not typo. We do not care about the differentiability of the end points a and b).
- 3. f'(x) > 0 (resp. f'(x) < 0) for $x \in (a, b)$.

Then f(x) is a strictly increasing function on I.

Theorem 1.2. Given a < b. Let I = (a, b) (respectively [a, b), (a, b], [a, b]). Let f be a continuous function on I.

- 1. If f is a strictly increasing function, then the inverse function $g: J \to I$ exists. Here J = (f(a), f(b)) (respectively [f(a), f(b)), (f(a), f(b)], [f(a), f(b)]) is an interval.
- 2. If f is a strictly decreasing function, then the inverse function $g: J \to I$ exists. Here J = (f(b), f(a)) (respectively (f(b), f(a)), [f(b), f(a)), [f(b), f(a)]) is an interval.

In particular, if f is differentiable on (a,b) and f'(x) > 0 (or < 0) for all $x \in (a,b)$. Then the inverse of f exists.

Example 1.5. $f(x) = e^x$ is a function from $(-\infty, \infty)$ to $(0, \infty)$. $f'(x) = e^x > 0$ for all x. Hence it is an increasing function. The inverse is denoted by $\ln x$.

Example 1.6. Let $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ defined by $f(x) = \sin(x)$. Then $f'(x) = \cos(x) > 0$ for $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$. So f is a strictly increasing function on $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and hence the inverse $g: [-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ exists and is denoted by $\arcsin(x)$ or $\sin^{-1} x$.

Question: How about $f: [\frac{\pi}{2}, \frac{3\pi}{2}] \to [-1, 1]$? Does the inverse exist?

Figure 4: $y = e^x, x \in [-10, 10]$

Example 1.7. Let $f : [0, \pi] \to [-1, 1]$ defined by $f(x) = \cos(x)$. Then $f'(x) = -\sin(x) < 0$ for $x \in (0, \pi)$. So f is a strictly decreasing function on $[0, \pi]$ and hence the inverse $g : [-1, 1] \to [0, \pi]$ exists and is denoted by $\arccos(x)$ or $\cos^{-1} x$.

Figure 5: $y = \cos x, x \in [-3\pi, 3\pi]$

Example 1.8. 1. tan : $(-\frac{\pi}{2}, \frac{\pi}{2}) \to (-\infty, \infty)$ is a strictly increasing function. The inverse is denoted by $\arctan x$.

2. Recall $\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$, $\cot : (0, \pi) \to (-\infty, \infty)$ is a strictly decreasing function. The inverse is denoted by $\operatorname{arccot} x$

Figure 6: $y = \tan x, x \in [-3\pi, 3\pi]$

Question: Recall sec $x = \frac{1}{\cos x}$ and $\csc x = \frac{1}{\sin x}$, do you think the inverse function exists?

2 Derivative of inverse function

Theorem 2.1. Suppose f has an inverse function f^{-1} .

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

provided the denominator is non-zero.

Proof. (sketch). Write $g(x) = f^{-1}(x)$. Then f(g(x)) = x. Let y = g(x). Consider

$$x \xrightarrow{g} y = g(x) \xrightarrow{f} x = f(y).$$

$$1 = \frac{dx}{dx} = \frac{dx}{dy}\frac{dy}{dx}.$$
(1)

Therefore

$$\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1} = \frac{1}{f'(y)} = \frac{1}{f'(f^{-1}(x))}$$

provided the denominator $f'(y) = f'(f^{-1}(x)) \neq 0$.

Example 2.1. Show that

$$\frac{d}{dx}\ln x = \frac{1}{x}.$$

Answer. Let $y = f(x) = \ln x$. Then $x = e^y$

$$(f^{-1})'(x) = \left(\frac{dx}{dy}\right)^{-1} = \frac{1}{e^y}.$$

Express the right hand side in terms of x, we have

$$(f^{-1})'(x) = \frac{1}{x}.$$

Example 2.2. Show that

$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}.$$

Answer. Let $y = \sqrt{x}$, then $x = y^2$.

$$\frac{d\sqrt{x}}{dx} = \frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1} = \frac{1}{2y}.$$

Express the right hand side in terms of x, we have

$$\frac{d\sqrt{x}}{dx} = \frac{1}{2\sqrt{x}}$$

Example 2.3. Show that

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}.$$

Answer. Let $y = \arctan x$, then $x = \tan y$.

$$\frac{dx}{dy} = \frac{1}{\cos^2 y}.$$

If possible, we will express the right hand side in terms of x:

$$\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1} = \cos^2 y = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$$

Observation. Although $\arctan x$ is a complicated function, its derivative is surprisingly simple!

Example 2.4. Compute $\frac{d}{dx} \arcsin x$.

Answer. Let $y = \arcsin x$. Then $x = \sin y$.

$$\frac{dx}{dy} = \cos y.$$

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}.$$

Example 2.5. Let $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^3 + 4x$.

- 1. Discuss the existence of the inverse function.
- 2. Find $\frac{d}{dx}f^{-1}(x)$
- 3. Find $\frac{d}{dx}f^{-1}(x)\Big|_{x=5}$.

Answer.

1. $f'(x) = 3x^2 + 4$ is positive for all real number x. So f(x) is a strictly increasing function. Because $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to +\infty} f(x) = +\infty$. So there exists an inverse function

$$f^{-1}: \mathbf{R} \to \mathbf{R}.$$

Remark It is not easy to find the inverse function explicitly. An explicit formula is given at the remark below

2. Let $y = f^{-1}(x)$, i.e., x = f(y).

$$\frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{3y^2 + 4}.$$

We should express the solution in terms of x. However, it is very difficult to express y in terms of x explicitly. So it is ok to express the answer in terms of y.

3. When x = 5, $y = f^{-1}(5) = 1$ (check f(1) = 5). So

$$\left. \frac{d}{dx} f^{-1}(x) \right|_{x=5} = \left. \frac{1}{3y^2 + 4} \right|_{y=1} = \frac{1}{7}.$$

Remark The inverse function of $f(x) = x^3 + 4x$ is given by

$$f^{-1}(x) = \frac{\sqrt[3]{\sqrt{3}\sqrt{27x^2 + 256} + 9x}}{\sqrt[3]{2}3^{2/3}} - \frac{4\sqrt[3]{\frac{2}{3}}}{\sqrt[3]{\sqrt{3}\sqrt{27x^2 + 256} + 9x}}$$

But we don't need the formula to complete part 2 and part 3 of the example.