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Lecture 10: Chain Rule, max/min

Charles Li

1 The Chain rule

Theorem 1.1 (The Chain Rule). If y = f(u) is a differentiable function of u and
u = g(x) is a differentiable function of x, then the composite function y = f(g(x)) is a
differentiable function of x whose derivative is given by the product

dy

dx
=

dy

du

du

dx

or equivalently
dy

dx
= f ′(g(x))g′(x).

�

Proof.

lim
h→0

f(g(x + h))− f(g(x))

h
= lim

h→0

f(g(x + h))− f(g(x))

g(x + h)− g(x)

g(x + h)− g(x)

h

= lim
h→0

f(g(x + h))− f(g(x))

g(x + h)− g(x)
lim
h→0

g(x + h)− g(x)

h

= lim
k→0

f(g(x) + k)− f(g(x))

k
lim
h→0

g(x + h)− g(x)

h
(let k = g(x + h)− g(x))

= f ′(g(x))g′(x).

Example 1.1. Compute:
d

dx
(1 + 2x)5.

�

Answer. Set y = f(u) = u5 and u = g(x) = 1 + 2x. Then f(g(x)) = (1 + 2x)5.
Now

dy

du
= 5u4 and g′(x) = 2.

Hence
dy

dx
=

dy

du

du

dx
= (5u4)(2) = 10(1 + 2x)4.

Example 1.2. Compute:
d

dx

√
1 +
√
x.

�
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Answer. Let y = f(u) =
√
u, u = g(x) = 1 +

√
x. Then

√
1 +
√
x = f(g(x)).

dy

du
=

1

2
u−1/2 =

1

2
√
u

and
du

dx
=

1

2
√
x
.

Therefore
dy

dx
=

dy

du

du

dx
=

1

2
√
u

1

2
√
x

=
1

4
√
x
√

1 +
√
x
.

Example 1.3. Compute
d

dx
e
√
x.

�

Answer. Let y = f(u) = eu, u =
√
x. Then f(g(x)) = e

√
x.

dy

du
= eu and

du

dx
=

1

2
√
x
.

Therefore
dy

dx
=

dy

du

du

dx
= eu

1

2
√
x

=
e
√
x

2
√
x

Example 1.4. Let g(x) be a differentiable function. Find

d

dx
(g(x))n.

�

Answer. Let y = f(u) = un, u = g(x).

dy

du
= nun−1 and

du

dx
= g′(x).

Then
dy

dx
=

dy

du

du

dx
= nun−1g′(x) = n(g(x))n−1g′(x).

Example 1.5. Reprove the quotient rule. �

Answer.

d

dx

f(x)

g(x)
=

d

dx
f(x)g(x)−1

= g(x)−1
d

dx
f(x) + f(x)

d

dx
g(x)−1 (by the product rule)

= g(x)−1f ′(x)− f(x)g(x)−2g′(x) (by the previous example with n = −1)

=
f ′(x)g(x)− f(x)g′(x)

g(x)2
.
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Proposition 1.1. Suppose y = f(u), u = g(w) and w = h(x) are differentiable func-
tions, then f(g(h(x))) is a differentiable function with

dy

dx
=

dy

du

du

dw

dw

dx

or, equivalently
dy

dx
= f ′(g(h(x)))g′(h(x))h′(x).

�

Proof. By the Chain rule
dy

dx
=

dy

du

du

dx
and

du

dx
=

du

dw

dw

dx
.

Substitute the second equation into the first one.

dy

dx
=

dy

du

du

dx
=

dy

du

du

dw

dw

dx
.

Remark Similar results can be proved for composite of many functions.

Example 1.6. Compute
d

dx
e

√
x−1
x+1 .

�

Answer. Let y = f(u) = eu, u = g(w) =
√
w and w = h(x) = x−1

x+1
. Then

e

√
x−1
x+1 = f(g(h(x)).

Now
dy

du
= eu,

du

dw
=

1

2
√
w
,
dw

dx
=

2

(x + 1)2
.

Therefore

dy

dx
=

dy

du

du

dw

dw

dx

= eu
1

2
√
w

2

(x + 1)2

= e

√
x−1
x+1

1

2
√

x−1
x+1

2

(x + 1)2

= e

√
x−1
x+1

1

(x− 1)1/2(x + 1)3/2
.

Example 1.7. Compute
d

dx
sin(cos(

√
x)).

�
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Answer. Let y = f(u) = sin(u), u = g(w) = cos(w), w = h(x) =
√
x. Then

sin(cos(
√
x)) = f(g(h(x))).

dy

dx
=

dy

du

du

dw

dw

dx

= cos(u)(− sin(w))
1

2
√
x

= −cos(cos(
√
x)) sin(

√
x)

2
√
x

.

2 Increasing/decreasing

Definition 2.1. Let f(x) be a function defined on an interval. Then

1. f(x) is increasing on the interval if f(x2) ≥ f(x1) whenever x2 ≥ x1.

2. f(x) is strictly increasing on the interval if f(x2) > f(x1) whenever x2 > x1.

3. f(x) is decreasing on the interval if f(x2) ≤ f(x1) whenever x2 ≥ x1.

4. f(x) is strictly decreasing on the interval if f(x2) < f(x) whenever x2 > x1.

�

Theorem 2.1. Let f be a differentiable function on the interval (a, b).

1. If f ′(x) ≥ 0 for all x ∈ (a, b), then f(x) is an increasing function.

2. If f ′(x) > 0 for all x ∈ (a, b), then f(x) is a strictly increasing function.

3. If f ′(x) ≤ 0 for all x ∈ (a, b), then f(x) is a decreasing function.

4. If f ′(x) < 0 for all x ∈ (a, b), then f(x) is a strictly decreasing function.

�

4



Proof. discussed during class. A rigorous will be given after you learn mean value theo-
rem

Example 2.1. Show that f(x) = ex − x− 1 is an increasing function on [0,∞). �

Answer. f ′(x) = ex − 1 ≥ 1− 1 = 0. So f(x) is an increasing function.
Interesting observation Because f(x) is an increasing function, f(x) > f(0) = 0 for
x > 0, i.e.

ex > 1 + x, for x > 0.

Exercise 2.1. Let k be a positive integer, show that

ex − 1− x

1!
− x2

2!
− · · · − xk

k!

is an increasing function on [0,∞) and hence show that for x ≥ 0,

ex ≥ 1 +
x

1!
+

x2

2!
+ · · ·+ xk

k!
.

�

Procedure to determine the increasing interval and decreasing intervals of f

1. Find all x such that f ′(x) = 0 or f ′(x) is undefined. Mark those points on a number
line and divide the line into different intervals.

2. For each intervals (a, b) obtained in the previous step. Pick a number c ∈ (a, b).

(a) If f ′(c) > 0, then f ′(x) > 0 on (a, b). Hence f(x) is a strict increasing function
on (a, b).

(b) If f ′(c) < 0, then f ′(x) < 0 on (a, b). Hence f(x) is a strict decreasing function
on (a, b).

Example 2.2. Find the intervals of increase and decrease of the function

f(x) = 2x3 + 3x2 − 12x− 7.

�

Answer.
f ′(x) = 6x2 + 6x− 12 = 6(x + 2)(x− 1).

Now f ′(x) = 0 if and only if x = 1 and x = −2. So we have 3 intervals: (i) (−∞,−2)
(ii) (−2, 1) (iii) (1,∞).

1. For the interval (−∞,−2), pick c = −3, f ′(−3) = 24 > 0. Therefore f ′(x) > 0 on
this interval and hence is an increasing function on this interval.

2. For the interval (−2, 1), pick c = 0, f ′(0) = −6 < 0. Therefore f ′(x) < 0 on this
interval and hence is a decreasing function on this interval.

3. For the interval (1,∞), pick c = 2, f ′(2) = 24 > 0. Therefore f ′(x) > 0 on this
interval and hence is an increasing function on this interval.
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Figure 1: y = 2x3 + 3x2 − 12x− 7

interval Test number c f ′(c) conclusion
x < −2 −3 f ′(−3) = 24 > 0 increasing
−2 < x < 1 0 f ′(0) = −12 < 0 decreasing
−1 < x 2 f ′(2) = 24 > 0 increasing

Example 2.3. Find the intervals of increase and decrease of the function

f(x) = x7 − 2x5 + x3.

�

Answer. f ′(x) = 7x4 − 10x4 + 3x2 = x2(7x4 − 10x2 + 3) = 0. Let y = x2. Consider
7y2 − 10y + 3, we have y = 1 or y = 3

7
. So the critical points are x = 0,±1 and

±
√

3
7
≈ ±0.654654.

interval Test number c f ′(c) conclusion
x < −1 −2 f ′(−2) = 300 > 0 increasing

−1 < x < −
√

3
7

−0.8 f ′(−0.8) = −0.34 < 0 decreasing

−
√

3
7
< x < 0 −0.5 f ′(−0.5) = 0.234 > 0 increasing

0 < x <
√

3
7

0.5 f ′(0.5) = 0.234 > 0 increasing√
3
7
< x < 1 0.8 f ′(0.8) = −0.34 < 0 decreasing

1 < x 2 f ′(2) = 300 > 0 increasing

Definition 2.2. Let f(x) be a function with domain D.

1. The graph of the function f(x) is said to have a relative maximum (or local
maximum) at x = c if f(c) ≥ f(x) for all x in some interval (a, b) containing c.

2. The graph of the function f(x) is said to have a relative minimum (or local
minimum) at x = c if f(c) ≤ f(x) for all x in some interval (a, b) containing c.

3. The relative maxima and minima of f are called its relative extrema (or local
extrema)

�

Definition 2.3. Let f(x) be a function with domain D.
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Figure 2: x7 − 2x5 + x3

1. f(x) is said to have a absolute maximum (or global maximum) at x = c if
f(c) ≥ f(x) for all x in D.

2. f(x) is said to have a absolute minimum (or global minimum) at x = c if
f(c) ≤ f(x) for all x in D.

�

Since a function f(x) is increasing when f ′(x) > 0 and decreasing when f ′(x) < 0,
the only points where f(x) can have a relative extremum are where f ′(x) = 0 or f ′(x)
does not exist. Such points are so important that we give them a special names.

Definition 2.4. A number c in the domain of f(x) is called a critical number if either
f ′(c) = 0 or f ′(c) does not exist. The corresponding point (c, f(c)) on the graph of f(x)
is called a critical point for f(x). �

Theorem 2.2. Relative extreme can only occur at critical points. �

Important remark: Not all critical points correspond to relative extrema.

Theorem 2.3 (The First Derivative Test for Relative Extrema). Let c be a critical
number for f(x). (That is, f(c) is defined and either f ′(c) = 0 or f ′(c) does not exist).
Then the critical point (c, f(c)) is

1. Relative maximum if f ′(x) > 0 to the left of c and f ′(x) < 0 to the right of c.

2. Relative minimum if f ′(x) < 0 to the left of c and f ′(x) > 0 to the right of c.

3. not a relative extremum if f ′(x) has the same sign on both sides of c.
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Property
Sign of f ′(x)

to the left of c
Sign of f ′(x)

to the right of c
Relative maximum + −
Relative minimum − +

Not a relative extremum + +
Not a relative extremum − −

�

Example 2.4. Let
f(x) = 2x3 + 3x2 − 12x− 7.

(See Example 2.2). Find the relative maximum and relative minimum. �

Answer. Refer to the answer of Example 2.2, f ′(x) = 6x2 − 6x − 12. The critical
numbers are solutions of f ′(x) = 0, i.e x = −1 and x = 2.

x x < −2 x = −2 −2 < x < 1 x = 1 1 < x
f ′(x) + 0 − 0 +

So (−2, f(−2)) = (−2, 13) is a relative maximum and (1, f(1)) = (1, 14) is a relative
minimum.

Example 2.5. Let
f(x) = x7 − 2x5 + x3.

(see Example 2.3.) Find the relative maximum and relative minimums. �

Answer. Refer to the answer of Example 2.3, f ′(x) = 7x6 − 10x4 + 3x2. The critical

numbers are solutions of f ′(x) = 0, i.e, x = 0, x = ±1 and x = ±
√

3
7
.

x x < −1 x = −1 −1 < x < −
√

3
7

x = −
√

3
7
−
√

3
7
< x < 0

f ′(x) + 0 − 0 +

x x = 0 0 < x <
√

3
7

x =
√

3
7

√
3
7
< x < 1 x = 1 1 < x

f ′(x) 0 + 0 − 0 +
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So (−1, f(−1)) = (−1, 0), (
√

3
7
, f(

√
3
7
) ≈ (0.655, 0.092) are relative maximums. (−

√
3
7
, f(−

√
3
7
)) ≈

(−0.655,−0.092), (1, f(1)) = (1, 0) are relative minimums. Note that (0, f(0) is neither
a relative maximum nor a relative minimum.

3 Second derivative test

Recall: f ′′(x) = d
dx
f ′(x).

If f ′(x) changes from positive to negative it is decreasing. In this case, f ′′(x) might
be negative, and if in fact f ′′(x) is negative then f ′(x) is definitely decreasing, so there is
a relative maximum at the point in question. On the other hand, if f ′(x) changes from
negative to positive it is increasing. Again, this means that f ′′(x) might be positive,
and if in fact f ′′(x) is positive then f ′(x) is definitely increasing, so there is a relative
minimum at the point in question. We summarize this as the second derivative test.

Theorem 3.1 (Second Derivative Test). Suppose that f ′′(x) is continuous on an open
interval and that f ′(c) = 0 for some value of c in that interval.

• If f ′′(c) < 0, then f(x) has a relative maximum at c.

• If f ′′(c) > 0, then f(x) has a relative minimum at c.

• If f ′′(c) = 0, then the test is inconclusive. In this case, f(x) may or may not have
a relative extremum at x = c.

�

The second derivative test is often the easiest way to identify relative maximum and
minimum points. Sometimes the test fails and sometimes the second derivative is quite
difficult to evaluate. In such cases we must fall back on one of the previous tests.

Example 3.1. Let
f(x) = x7 − 2x5 + x3.

(see Example 2.3.) Find the relative maximum and relative minimums by the second
derivative test. �

Answer. Refer to Example 2.3, the critical points are x = 0, x = ±1 and x = ±
√

3
7
.

f ′(x) = 7x6 − 10x4 + 3x2, f ′′(x) = 42x5 − 40x3 + 6x.

x −1 −
√

3
7

0
√

3
7

1

f ′′(x) −8 2.2445.. 0 −2.2445... 8
Property rel. max. rel. min. inconclusive rel. max. rel. min.

4 How to find absolute max/min

Theorem 4.1. Suppose f : [a, b] → R is a continuous function, then the absolute
maximum point and absolute minimum point exist for the graph of f . �

Suppose f is a differentiable function on [a, b]. If (c, f(c)) with c ∈ (a, b) (i.e., c is not
one of the end point) is a absolute maximum or absolute minimum, then it is a relative
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minimum or relative maximum and hence c is a critical point. The result may not be
true if c is one of the end point (i.e. c = a or c = b) (why?)

So the possible list of candidates of absolute maximum or minimum are (i) The criti-
cal points (ii) the end points a and b. To find the absolute maximum and minimum, we
compute the value of f on all the candidates and find the largest one and the smallest one.

Step to find absolute max/min
Suppose f is a differentiable function on [a, b]

1. Find all the critical points f ′(x) = 0 for x ∈ (a, b). Denote the list of critical points
are c1, c2, . . . ,.

2. Compute f(a), f(b), f(c1), f(c2), . . . , and find the maximum value and the minimum
value among them. The maximum value corresponds to the absolute max. The
minimum value corresponds to the absolute min.

Example 4.1. Find the absolute maximum and absolute minimum of the function
f(x) = x5 − 80x on the interval [−3, 4].

Figure 3: y = x5 − 80x over [−3, 4]

�

Answer. f ′(x) = 5x4 − 80. Solve f ′(x) = 0 for x ∈ (−3, 4), we have x = −2 or 2. Now
find the maximum and minimum of the set f(−2) = 128, f(2) = −128, f(−3) = −3,
f(4) = 704. The absolute minimum is (2, f(2)) = (2,−128) and the absolute maximum
is (4, f(4)) = (4, 704).
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