2018 MATH1010 Lecture 1: Notation and functions Charles Li

The lecture note was used during 2016-17 Term 1. It is for reference only. It may contain typos. Read at your own risk.

1 Notation: set

- Set is a collection of objects (also called elements)
- \subseteq : subset of. $A \subseteq B$ means A is a subset of B.
- \in : belongs to. $a \in A$ means a belongs to A. We also say that a is an objects (or elements) of A.
- \cup : Union, $A \cup B$ means the union of the sets A and B.
- \cap : intersection, $A \cap B$ means the intersection of the sets A and B.
- $A \setminus B$: elements in A but not in B.
- \emptyset represent an empty set.
- Z represent the set of integers, R denotes the set of real numbers.

Example 1

- 1. $A = \{1, 2, 3\}, B = \{2, 3, 5\} C = \{1, 2, 3, 4, 5\}.$ Then $A \subset C$, $1 \in A, A \cup B = \{1, 2, 3, 5\}, A \cap B = \{2, 3\}, A \setminus B = \{1\}, 1 \notin B$ and $B \not\subseteq A$
- 2. C = all students studying at CUHK. M = all math major students currently studying at CUHK. Then $M \subseteq C$. You $\in C$.

2 Notations: intervals

• **R**: the set of all real numbers.

- [a, b]: the set of all real numbers x such that $a \le x \le b$.
- (a, b): the set of all real numbers x such that a < x < b.
- (a, b]: the set of all real numbers x such that $a < x \le b$.
- [a, b]: the set of all real numbers x such that $a \le x < b$.
- $[a, \infty)$: the set of all real numbers x such that $a \leq x$.
- $\mathbf{R} \setminus \{a\}$: the set of all real numbers x, except x = a.

Example 2

1. Solve $x^2 < 1$.

2. Solve $x^2 > 1$.

Answer:

- 1. $x^2 < 1 \Leftrightarrow -1 < x < 1$. So the answer is (-1, 1).
- 2. If $x^2 > 1$, then x < -1 or x > 1. So the answer is $(-\infty, -1) \cup (1, \infty)$.

Exercises

- 1. Write down the meanings of the following sets.
 - (a) $(-\infty, a)$.
 - (b) $\mathbf{R} \setminus \{1, 2, 3\}$
 - (c) **R**\[2,3).
- 2. Show that $\mathbf{R} \setminus [1, \infty) = (-\infty, 1)$.

3 Functions

Definition 1 A function is a rule that assigns to each object in a set A exactly one object in a set B.

The set A is called the **domain** of the function. The set B of assigned objects in B is called the **range**.

Example 3 $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^2 + 4$. Then

$$f(-3) = (-3)^2 + 4 = 13$$

Or

$$y = x^2 + 4.$$

Then x is called an **independent variable** and y (which depends on x) is called a **dependent variable**

Example 4 Find the domain of the functions.

a. $f(x) = \frac{1}{x-3}$. b. $g(t) = \frac{\sqrt{3-2t}}{t^2+4}$.

Answer: a. x can be any real number except when the denominator is 0, i.e. x = 3. So the domain is $\mathbf{R} \setminus \{3\}$.

b. Only non-negative numbers have square roots. So the domain consists of t such that $3 - 2t \ge 0$, i.e., $t \le \frac{3}{2}$ and hence the domain is $(-\infty, \frac{3}{2}]$.

Example 5 What is the difference between $f(x) = \frac{x^2-1}{x-1}$ and g(x) = x+1.

By the difference of two squares: $x^2 - 1 = (x - 1)(x + 1)$. So $f(x) = \frac{(x-1)(x+1)}{x-1} = x + 1$. The problem is that we can't cancel out the factor x - 1 when x - 1 = 0.

If fact, the main difference is the domain:

The domain of f(x) is $\mathbf{R} \setminus \{1\}$.

The domain of g(x) is **R**.

Definition 2 A piecewise function is defined by using more than one formula, with each individual formula defined describe the function on a subset of the domain.

Example 6 $f : \mathbf{R} \to \mathbf{R}$ is defined by

$$f(x) = \begin{cases} 1 & \text{if } x < 0, \\ 2x & \text{if } x \ge 0. \end{cases}$$

Then f(-1) = 1, f(0) = 0 and f(1) = 2.

Example 7 Absolute value

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Example 8 Let $f : \mathbf{R} \setminus \{1\}$ is defined by $f(x) = \frac{x^2 - 1}{x - 1}$. We can write the function as

$$f(x) = \begin{cases} x+1 & \text{if } x \neq 1, \\ \text{undefined} & \text{if } x = 1. \end{cases}$$

Example 9 Let $f : \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q}, \, p, q \text{ relatively prime,} \\ 0 & \text{otherwise.} \end{cases}$$

Example 10

$$f(x) = \begin{cases} 1 & \text{if } 1 \le x \le 2, \\ 0 & \text{if } x > 10, \\ -1 & \text{otherwise.} \end{cases}$$

4 Graphs of functions

If f is a function with domain D, then the **graph** of the function f are points in the Cartesian plan (x, f(x)). In set theory notation, the graph is

$$\{(x, f(x)) \mid x \in D\}$$

Example 11 If f(x) is a linear equation, i.e., f(x) = ax + b, then the graph is a straight line.

Figure 1: A plot of $y = \frac{x}{2} + 3$.

Example 12 $f(x) = \frac{1}{x}$

Figure 2: A plot of $y = \frac{1}{x}$.

4.1 Basic technique of plotting a graph

Example 13 Graph $y = x^2$. Make a table of xy-pair:

х	-3	-2	-1	0	1	2	3
у	9	4	1	0	1	4	9

Then join all the points together.

4.2 The vertical line test for a function

Not every curve can be a graph of a function. A function can have only one value f(x) for each x in its domain, so no vertical line can intersect the graph of a function more than once. If a is in the domain of the function f, then the vertical line x = a will intersect the graph of f at the single point (a, f(a)).

Example 14 Plot all the points $x^2 - 2x + y^2 = 0$. Explain why it is not a graph of any function.

Answer $x^2 - 2x + y^2 = 0$ if and only if $(x - 1)^2 + y^2 = 1$. So it is a circle, with center at (1, 0) and radius= 1.

Let x = a = 1 (or for any $x \neq 0, 2$). Then $y = \pm 1$. So x = 1 corresponding to two y's. Hence it is not a graph. How about $x^2 - 2x + y^2 = 0$ and $y \ge 0$?