Limits Differentiation Integration

- Sequences
 - Limits of sequences
 - Squeeze theorem
 - Monotone convergence theorem
- Limits of functions
 - Limits of functions
 - Exponential, logarithmic and trigonometric functions
- Continuity of functions

2 Differentiation

- Derivatives
 - Differentiable functions
 - Rules of differentiation
 - Second and higher derivatives
- Mean value theorem
 - Mean value theorem
- Application of Differentiation
 - L'Hopital's rule
 - Taylor series
 - Curve sketching

Limits Differentiation Integration

イロト イポト イヨト イヨト

3

2/333

- Integration
 - Indefinite integral and substitution
 - Definite integral
 - Fundamental theorem of calculus
- Techniques of Integration
 - Trigonometric integrals
 - Integration by parts
 - Reduction formula
- More Techniques of Integration
 - Trigonometric substitution
 - Integration of rational functions
 - t-substitution

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Limits of sequences

Definition (Infinite sequence of real numbers)

An **infinite sequence of real numbers** is defined by a function from the set of positive integers $\mathbb{Z}^+ = \{1, 2, 3, ...\}$ to the set of real numbers \mathbb{R} .

Example (Arithmetic sequence)

An **arithmetic sequence** is a sequence a_n such that $a_{n+1} - a_n = d$ is a constant for any n. The constant d is called the **common difference**. The *n*-th term of the sequence can be calculated by

$$a_n = a_1 + (n-1)d.$$

Sequence	a_1	d	a_n
$1, 3, 5, 7, 9, \ldots$	1	2	$a_n = 2n - 1$
$-4, -1, 2, 5, 8, \dots$	7	3	$a_n = 3n - 7$
$19, 12, 5, -2, -9, \ldots$	19	-7	$a_n = 26 - 7n$

Example (Geometric sequence)

A geometric sequence is a sequence a_n such that $a_{n+1} = ra_n$ for any n where r is a constant. The constant r is called the **common** ratio. The n-th term of the sequence can be calculated by

$$a_n = a_1 r^{n-1}.$$

Sequence	a_1	r	a_n	
$1, 2, 4, 8, 16, \ldots$	1	2	$a_n = 2^{n-1}$	
$18, 6, 2, \frac{2}{3}, \frac{2}{9}, \dots$	18	$\frac{1}{3}$	$a_n = \frac{54}{3^n}$	
$12, -6, 3, -\frac{3}{2}, \frac{3}{4}, \dots$	12	$-\frac{1}{2}$	$a_n = \frac{(-1)^{n-1}24}{2^n}$	

Example (Fibonacci sequence)

The **Fibonacci sequence** is the sequence F_n which satisfies

$$\begin{cases} F_{n+2} = F_{n+1} + F_n, \text{ for } n \ge 1 \\ F_1 = F_2 = 1 \end{cases}$$

The first few terms of F_n are

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$

The value of F_n can be calculated by

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Definition (Limit of sequence)

Suppose there exists real number L such that for any ε > 0, there exists N ∈ N such that for any n > N, we have |a_n − L| < ε. Then we say that a_n is convergent, or a_n converges to L, and write

$$\lim_{n \to \infty} a_n = L.$$

Otherwise we say that a_n is **divergent**.

2 Suppose for any M > 0, there exists $N \in \mathbb{N}$ such that for any n > N, we have $a_n > M$. Then we say that a_n tends to $+\infty$ as n tends to infinity, and write

$$\lim_{n \to \infty} a_n = +\infty.$$

We define a_n tends to $-\infty$ in a similar way. Note that a_n is divergent if it tends to $\pm\infty$.

Example (Intuitive meaning of limits of infinite sequences)

a_n	First few terms	Limit	
$\frac{1}{n^2}$	$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$	0	
$\frac{n}{n+1}$	$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$	1	
$(-1)^{n+1}$	$1, -1, 1, -1, \ldots$	does not exist	
2n	$2, 4, 6, 8, \dots$	does not $\mathrm{exist}/+\infty$	
$\left(1+\frac{1}{n}\right)^n$	$2, \frac{9}{4}, \frac{64}{27}, \frac{625}{256}, \dots$	$e \approx 2.71828$	
$\frac{F_{n+1}}{F_n}$	$1, 2, \frac{3}{2}, \frac{5}{3}, \dots$	$\frac{1+\sqrt{5}}{2} \approx 1.61803$	

Definition (Monotonic sequence)

- We say that a_n is monotonic increasing (decreasing) if for any m < n, we have a_m ≤ a_n (a_m ≥ a_n). We say that a_n is monotonic if a_n is either monotonic increasing or monotonic decreasing.
- 2 We say that a_n is strictly increasing (decreasing) if for any m < n, we have $a_m < a_n$ $(a_m > a_n)$.

Definition (Bounded sequence)

We say that a_n is **bounded** if there exists real number M such that $|a_n| < M$ for any $n \in \mathbb{N}$.

Example (Bounded and monotonic sequence)

a _n	Terms	Bounded	Monotonic	Convergent (Limit)
$\frac{1}{n^2}$	$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$	\checkmark	\checkmark	√ (0)
$\boxed{1-\frac{(-1)^n}{n}}$	$2, \frac{1}{2}, \frac{4}{3}, \frac{3}{4}, \dots$	\checkmark	×	√ (1)
n^2	$1, 4, 9, 16, \ldots$	Х	\checkmark	×
$1 - (-1)^n$	$2, 0, 2, 0, \ldots$	\checkmark	×	×
$(-1)^n n$	$-1, 2, -3, 4, \ldots$	×	×	×

Limits Sequences Differentiation Integration Continuity of func-

Theorem

If a_n is convergent, then a_n is bounded.

Theorem

If a_n is convergent, then a_n is bounded.

$\textbf{Convergent} \Rightarrow \textbf{Bounded}$

Note that the converse of the above statement is not correct.

 $\textbf{Bounded} \not\Rightarrow \textbf{Convergent}$

Theorem

If a_n is convergent, then a_n is bounded.

$\textbf{Convergent} \Rightarrow \textbf{Bounded}$

Note that the converse of the above statement is not correct.

Bounded \Rightarrow Convergent

The following theorem is very important and we will discuss it in details later.

Theorem (Monotone convergence theorem)

If a_n is bounded and monotonic, then a_n is convergent.

Theorem

If a_n is convergent, then a_n is bounded.

$\textbf{Convergent} \Rightarrow \textbf{Bounded}$

Note that the converse of the above statement is not correct.

Bounded \Rightarrow Convergent

The following theorem is very important and we will discuss it in details later.

Theorem (Monotone convergence theorem)

If a_n is bounded and monotonic, then a_n is convergent.

Bounded and **Monotonic** \Rightarrow **Convergent**

Exercise (True or False)

Suppose $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$. Then $\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$.

Answer:

Exercise (True or False)

Suppose $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$. Then $\lim_{n \to \infty} (a_n \pm b_n) = a \pm b.$

Answer: T

・ロ ・ ・ 一 ・ ・ 注 ・ く 注 ・ 注 ・ う へ (*) 11/333

Exercise (True or False)

Suppose $\lim_{n \to \infty} a_n = a$ and c is a real number. Then

$$\lim_{n \to \infty} ca_n = ca.$$

Answer:

Exercise (True or False)

Suppose $\lim_{n \to \infty} a_n = a$ and c is a real number. Then

$$\lim_{n \to \infty} ca_n = ca.$$

Answer: T

Exercise (True or False)

If
$$\lim_{n\to\infty} a_n = a$$
 and $\lim_{n\to\infty} b_n = b$, then
 $\lim_{n\to\infty} a_n b_n = ab.$

Answer:

Exercise (True or False)

If
$$\lim_{n\to\infty} a_n = a$$
 and $\lim_{n\to\infty} b_n = b$, then
 $\lim_{n\to\infty} a_n b_n = ab.$

Answer: T

Exercise (True or False)

If
$$\lim_{n \to \infty} a_n = a$$
 and $\lim_{n \to \infty} b_n = b$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}.$$

Answer:

Exercise (True or False)

If
$$\lim_{n \to \infty} a_n = a$$
 and $\lim_{n \to \infty} b_n = b$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}.$$

Answer: F

Exercise (True or False)

If
$$\lim_{n\to\infty} a_n = a$$
 and $\lim_{n\to\infty} b_n = b \neq 0$, then
 $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}.$

Answer:

Exercise (True or False)

If
$$\lim_{n\to\infty} a_n = a$$
 and $\lim_{n\to\infty} b_n = b \neq 0$, then
 $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}.$

Answer: T

Exercise (True or False)

If $\lim_{n \to \infty} a_n = 0$, then

$$\lim_{n \to \infty} a_n b_n = 0.$$

Answer:

Exercise (True or False)

If $\lim_{n\to\infty} a_n = 0$, then

$$\lim_{n \to \infty} a_n b_n = 0.$$

Answer: F

Example For $a_n = \frac{1}{n}$ and $b_n = n$, we have $\lim_{n \to \infty} a_n = 0$ but $\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} \frac{1}{n} \cdot n = \lim_{n \to \infty} 1 = 1 \neq 0.$

・ロ ・ ・ 一部 ト ・ 注 ト ・ 注 ・ う へ で
16 / 333

Exercise (True or False)

If $\lim_{n \to \infty} a_n = 0$ and b_n is **convergent**, then

$$\lim_{n \to \infty} a_n b_n = 0.$$

Answer:

Exercise (True or False)

If $\lim_{n \to \infty} a_n = 0$ and b_n is convergent, then

$$\lim_{n \to \infty} a_n b_n = 0.$$

Answer: T

Proof. $\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$ = 0

Exercise (True or False)

If $\lim_{n \to \infty} a_n = 0$ and b_n is bounded, then

$$\lim_{n \to \infty} a_n b_n = 0.$$

Answer:

Exercise (True or False)

If $\lim_{n \to \infty} a_n = 0$ and b_n is bounded, then

$$\lim_{n \to \infty} a_n b_n = 0.$$

Answer: T

Caution! The previous proof does not work.

Exercise (True or False)

If a_n^2 is convergent, then a_n is convergent.

Answer:

Exercise (True or False)

If a_n^2 is convergent, then a_n is convergent.

Answer: F

Example

For $a_n = (-1)^n$, a_n^2 converges to 1 but a_n is divergent.

Exercise (True or False)

If a_n is convergent, then $|a_n|$ is convergent.

Answer:

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

Exercise (True or False)

If a_n is convergent, then $|a_n|$ is convergent.

Answer: T

・ロ ・ ・ 一 ・ ・ 三 ト ・ 三 ト ・ 三 ・ つ Q (* 20 / 333)

Exercise (True or False)

If $|a_n|$ is convergent, then a_n is convergent.

Answer:

・ロ ・ ・ 一部 ・ ・ 注 ト ・ 注 ・ う へ (*) 21 / 333

Exercise (True or False)

If $|a_n|$ is convergent, then a_n is convergent.

Answer: F

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ の Q (*) 21 / 333

Exercise (True or False)

If a_n and b_n are divergent, then $a_n + b_n$ is divergent.

Answer:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Exercise (True or False)

If a_n and b_n are divergent, then $a_n + b_n$ is divergent.

Answer: F

Example

The sequences $a_n = n$ and $b_n = -n$ are divergent but $a_n + b_n = 0$ converges to 0.

Exercise (True or False)

If $\lim_{n \to \infty} b_n = +\infty$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Answer:

Exercise (True or False)

If $\lim_{n\to\infty} b_n = +\infty$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Answer: F

Example

For
$$a_n = n^2$$
 and $b_n = n$, we have $\lim_{n \to \infty} b_n = +\infty$ but $\frac{a_n}{b_n} = \frac{n^2}{n} = n$ is divergent.

Exercise (True or False)

If a_n is convergent and $\lim_{n \to \infty} b_n = \pm \infty$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Exercise (True or False)

If a_n is convergent and $\lim_{n \to \infty} b_n = \pm \infty$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Answer: T

Exercise (True or False)

If a_n is bounded and $\lim_{n \to \infty} b_n = \pm \infty$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Exercise (True or False)

If a_n is bounded and $\lim_{n \to \infty} b_n = \pm \infty$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Answer: T

Exercise (True or False)

Suppose a_n is bounded. Suppose b_n is a sequence and there exists N such that $b_n = a_n$ for any n > N. Then b_n is bounded.

Exercise (True or False)

Suppose a_n is bounded. Suppose b_n is a sequence and there exists N such that $b_n = a_n$ for any n > N. Then b_n is bounded.

Answer: T

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Exercise (True or False)

Suppose $\lim_{n\to\infty} a_n = a$. Suppose b_n is a sequence and there exists N such that $b_n = a_n$ for any n > N. Then

 $\lim_{n \to \infty} b_n = a.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

27 / 333

Exercise (True or False)

Suppose $\lim_{n\to\infty} a_n = a$. Suppose b_n is a sequence and there exists N such that $b_n = a_n$ for any n > N. Then

 $\lim_{n \to \infty} b_n = a.$

Answer: T

Exercise (True or False)

Suppose a_n and b_n are convergent sequences such that $a_n < b_n$ for any n. Then

 $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n.$

Answer:

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ 三 ・ つ Q (?)
28 / 333

Exercise (True or False)

Suppose a_n and b_n are convergent sequences such that $a_n < b_n$ for any n. Then

 $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n.$

Answer: F

Example

The sequences $a_n = 0$ and $b_n = \frac{1}{n}$ satisfy $a_n < b_n$ for any n. However

$$\lim_{n \to \infty} a_n \not< \lim_{n \to \infty} b_n$$

because both of them are 0.

Exercise (True or False)

Suppose a_n and b_n are convergent sequences such that $a_n \leq b_n$ for any n. Then

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n.$$

Exercise (True or False)

Suppose a_n and b_n are convergent sequences such that $a_n \leq b_n$ for any n. Then

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n.$$

Answer: T

Exercise (True or False)

If $\lim_{n \to \infty} a_n = a$, then

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1} = a.$$

Exercise (True or False)

If $\lim_{n \to \infty} a_n = a$, then

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1} = a.$$

Answer: T

Exercise (True or False)

If
$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1} = a$$
, then

$$\lim_{n \to \infty} a_n = a.$$

Exercise (True or False)

If $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1} = a$, then

$$\lim_{n \to \infty} a_n = a$$

Answer: T

Exercise (True or False)

If a_n is convergent, then

$$\lim_{n \to \infty} (a_{n+1} - a_n) = 0.$$

Exercise (True or False)

If a_n is convergent, then

$$\lim_{n \to \infty} (a_{n+1} - a_n) = 0.$$

Answer: T

Exercise (True or False)

If $\lim_{n\to\infty}(a_{n+1}-a_n)=0$, then a_n is convergent.

Answer:

Exercise (True or False)

If
$$\lim_{n\to\infty}(a_{n+1}-a_n)=0$$
, then a_n is convergent.

Answer: F

Example

Let
$$a_n = \sqrt{n}$$
. Then $\lim_{n \to \infty} (a_{n+1} - a_n) = 0$ and a_n is divergent.

Exercise (True or False)

If $\lim_{n\to\infty}(a_{n+1}-a_n)=0$ and a_n is bounded, then a_n is convergent.

Answer:

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ 三 ・ つ へ (?)
34 / 333

Exercise (True or False)

If $\lim_{n\to\infty}(a_{n+1}-a_n)=0$ and a_n is bounded, then a_n is convergent.

Answer: F

Example $0, \frac{1}{2}, 1, \frac{2}{3}, \frac{1}{3}, 0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1, \frac{4}{5}, \frac{3}{5}, \frac{2}{5}, \frac{1}{5}, 0, \frac{1}{6}, \frac{2}{6}, \dots$

・ロ ・ <
一 ・ <
通 ・ <
言 ・ <
言 ・
、
言 ・
う へ (C)
34 / 333
</p>

Limits Sequences Differentiation Integration Continuity of

Example

Let a > 0 be a positive real number.

$$\lim_{n \to \infty} a^n =$$

Example

Let a > 0 be a positive real number.

$$\lim_{n \to \infty} a^n = \begin{cases} +\infty, & \text{if } a > 1\\ 1, & \text{if } a = 1\\ 0, & \text{if } 0 < a < 1 \end{cases}$$

Limits Sequence Differentiation Limits of Integration Continuit

Sequences Limits of functions Continuity of functions

Example

$$\lim_{n \to \infty} \frac{2n-5}{3n+1} =$$

< □ > < □ > < 直 > < 直 > < 直 > < 直 > < 三 > ○ Q (~ 36 / 333 Limits Sequences Differentiation Limits of f Integration Continuity

Sequences Limits of functions Continuity of functions

Example

$$\lim_{n \to \infty} \frac{2n-5}{3n+1} = \lim_{n \to \infty} \frac{2-\frac{5}{n}}{3+\frac{1}{n}}$$
$$= \frac{2-0}{3+0}$$
$$= \frac{2}{3}$$

Example

$$\lim_{n \to \infty} \frac{n^3 - 2n + 7}{4n^3 + 5n^2 - 3} =$$

Example

$$\lim_{n \to \infty} \frac{n^3 - 2n + 7}{4n^3 + 5n^2 - 3} = \lim_{n \to \infty} \frac{1 - \frac{2}{n^2} + \frac{7}{n^3}}{4 + \frac{5}{n} - \frac{3}{n^3}} = \frac{1}{4}$$

Limits Sequences Differentiation Integration Continuity of functions

Example

$$\lim_{n\to\infty}\frac{3n-\sqrt{4n^2+1}}{3n+\sqrt{9n^2+1}} =$$

< □ > < □ > < 直 > < 直 > < 直 > < 直 > < 三 > ○ Q () 38 / 333

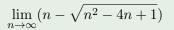
Example

$$\lim_{n \to \infty} \frac{3n - \sqrt{4n^2 + 1}}{3n + \sqrt{9n^2 + 1}} = \lim_{n \to \infty} \frac{3 - \frac{\sqrt{4n^2 + 1}}{n}}{3 + \frac{\sqrt{9n^2 + 1}}{n}}$$
$$= \lim_{n \to \infty} \frac{3 - \sqrt{4 + \frac{1}{n^2}}}{3 + \sqrt{9 + \frac{1}{n^2}}}$$
$$= \frac{1}{6}$$

< □ > < □ > < 直 > < 直 > < 直 > < 直 > < 三 > ○ Q () 38 / 333

Example

_



Example

$$\lim_{n \to \infty} (n - \sqrt{n^2 - 4n + 1})$$

$$= \lim_{n \to \infty} \frac{(n - \sqrt{n^2 - 4n + 1})(n + \sqrt{n^2 - 4n + 1})}{n + \sqrt{n^2 - 4n + 1}}$$

$$= \lim_{n \to \infty} \frac{n^2 - (n^2 - 4n + 1)}{n + \sqrt{n^2 - 4n + 1}}$$

$$= \lim_{n \to \infty} \frac{4n - 1}{n + \sqrt{n^2 - 4n + 1}}$$

$$= \lim_{n \to \infty} \frac{4 - \frac{1}{n}}{1 + \sqrt{1 - \frac{4}{n} + \frac{1}{n^2}}}$$

$$= 2$$

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Example

$$\lim_{n \to \infty} \frac{\ln(n^4 + 1)}{\ln(n^3 + 1)} =$$

Example

$$\lim_{k \to \infty} \frac{\ln(n^4 + 1)}{\ln(n^3 + 1)} = \lim_{n \to \infty} \frac{\ln(n^4(1 + \frac{1}{n^4}))}{\ln(n^3(1 + \frac{1}{n^3}))}$$

$$= \lim_{n \to \infty} \frac{\ln n^4 + \ln(1 + \frac{1}{n^4})}{\ln n^3 + \ln(1 + \frac{1}{n^3})}$$

$$= \lim_{n \to \infty} \frac{4 \ln n + \ln(1 + \frac{1}{n^4})}{3 \ln n + \ln(1 + \frac{1}{n^3})}$$

$$= \lim_{n \to \infty} \frac{4 + \frac{\ln(1 + \frac{1}{n^4})}{3 + \frac{\ln(1 + \frac{1}{n^3})}{\ln n}}}{3 + \frac{\ln(1 + \frac{1}{n^3})}{\ln n}}$$

$$= \frac{4}{3}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Squeeze theorem

Theorem (Squeeze theorem)

Suppose a_n, b_n, c_n are sequences such that $a_n \leq b_n \leq c_n$ for any nand $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$. Then b_n is convergent and $\lim_{n \to \infty} b_n = L$. Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Theorem

If
$$a_n$$
 is bounded and $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n b_n = 0$.

Proof.

Theorem

If
$$a_n$$
 is bounded and $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n b_n = 0$.

Proof.

Since a_n is bounded, there exists M such that $-M < a_n < M$ for any n. Thus

$$-M|b_n| < a_n b_n < M|b_n|$$

for any n. Now

$$\lim_{n \to \infty} (-M|b_n|) = \lim_{n \to \infty} M|b_n| = 0.$$

Therefore by squeeze theorem, we have

$$\lim_{n \to \infty} a_n b_n = 0.$$

42/333

イロト イポト イヨト イヨト

Limits	Sequences
Differentiation	Limits of functions
Integration	Continuity of functions

Example

Find
$$\lim_{n \to \infty} \frac{\sqrt{n} + (-1)^n}{\sqrt{n} - (-1)^n}$$
.

Solution

Limits	Sequences
Differentiation	Limits of functions
Integration	Continuity of functions

Example

Find
$$\lim_{n \to \infty} \frac{\sqrt{n} + (-1)^n}{\sqrt{n} - (-1)^n}$$
.

Solution

Since
$$(-1)^n$$
 is bounded and $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$, we have
 $\lim_{n \to \infty} \frac{(-1)^n}{\sqrt{n}} = 0$ and therefore

$$\lim_{n \to \infty} \frac{\sqrt{n} + (-1)^n}{\sqrt{n} - (-1)^n} = \lim_{n \to \infty} \frac{1 + \frac{\sqrt{n}}{\sqrt{n}}}{1 - \frac{(-1)^n}{\sqrt{n}}} = 1$$

Limits Sequer Differentiation Limits Integration Contin

Sequences Limits of functions Continuity of functions

Example

Show that
$$\lim_{n \to \infty} \frac{2^n}{n!} = 0.$$

Proof.

Example

Show that
$$\lim_{n \to \infty} \frac{2^n}{n!} = 0.$$

Proof.

Observe that for any $n \geq 3$,

$$0 < \frac{2^n}{n!} = 2\left(\frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdots \frac{2}{n-1}\right)\frac{2}{n} \le 2 \cdot \frac{2}{n} = \frac{4}{n}$$

and $\lim_{n \to \infty} \frac{4}{n} = 0.$ By squeeze theorem, we have

$$\lim_{n \to \infty} \frac{2^n}{n!} = 0.$$

44 / 333

2

<ロ> (日) (日) (日) (日) (日)

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Monotone convergence theorem

Theorem (Monotone convergence theorem)

If a_n is bounded and monotonic, then a_n is convergent.

Bounded and Monotonic \Rightarrow Convergent

Example

Let a_n be the sequence defined by the recursive relation $\begin{cases} a_{n+1} = \sqrt{a_n + 1} \text{ for } n \ge 1\\ a_1 = 1\\ \text{Find } \lim_{n \to \infty} a_n. \end{cases}$

n	a_n
1	1
2	1.414213562
3	1.553773974
4	1.598053182
5	1.611847754
10	1.618016542
15	1.618033940

Limits Sequence Differentiation Limits of Integration Continuit

Sequences Limits of functions Continuity of functions

Solution

Suppose
$$\lim_{n \to \infty} a_n = a$$
. Then $\lim_{n \to \infty} a_{n+1} = a$ and thus $a = \sqrt{a+1}$

$$a^2 = a+1$$
$$a^2 - a - 1 = 0$$

By solving the quadratic equation, we have

$$a = \frac{1 + \sqrt{5}}{2}$$
 or $\frac{1 - \sqrt{5}}{2}$

It is obvious that a > 0. Therefore

$$a = \frac{1 + \sqrt{5}}{2} \approx 1.6180339887$$

Solution

The above solution is not complete.

Solution

The above solution is not complete. The solution is valid only after we have proved that $\lim_{n\to\infty} a_n$ exists and is positive. This can be done by using **monotone convergent theorem**. We are going to show that a_n is **bounded** and **monotonic**.

Boundedness

We prove that $1 \le a_n < 2$ for all $n \ge 1$ by induction. (Base case) When n = 1, we have $a_1 = 1$ and $1 \le a_1 < 2$. (Induction step) Assume that $1 \le a_k < 2$. Then

$$a_{k+1} = \sqrt{a_k + 1} \ge \sqrt{1+1} > 1$$

$$a_{k+1} = \sqrt{a_k + 1} < \sqrt{2+1} < 2$$

Thus $1 \le a_n < 2$ for any $n \ge 1$ which implies that a_n is bounded.

Limits Sequen Differentiation Limits Integration Continu

Sequences Limits of functions Continuity of functions

Solution

Monotonicity

We prove that $a_{n+1} > a_n$ for any $n \ge 1$ by induction. (Base case) When n = 1, $a_1 = 1$, $a_2 = \sqrt{2}$ and thus $a_2 > a_1$. (Induction step) Assume that

 $a_{k+1} > a_k$ (Induction hypothesis).

Then

$$a_{k+2} = \sqrt{a_{k+1}+1} > \sqrt{a_k+1}$$
 (by induction hypothesis)
= a_{k+1}

This completes the induction step and thus a_n is strictly increasing. We have proved that a_n is bounded and strictly increasing. Therefore a_n is convergent by monotone convergence theorem. Since $a_n \ge 1$ for any n, we have $\lim_{n\to\infty} a_n \ge 1$ is positive.

Limits	Sequences
Differentiation	Limits of functions
Integration	Continuity of function

Example

Let
$$a_n = \frac{F_{n+1}}{F_n}$$
 where F_n is the Fibonacci's sequence defined by
$$\begin{cases}
F_{n+2} = F_{n+1} + F_n \\
F_1 = F_2 = 1 \\
\text{Find } \lim_{n \to \infty} a_n.
\end{cases}$$

n	a_n
1	1
2	2
3	1.5
4	1.6666666666
5	1.6
10	1.618181818
15	1.618032787
20	1.618033999

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Theorem

For any
$$n \ge 1$$
,
• $F_{n+2}F_n - F_{n+1}^2 = (-1)^{n+1}$
• $F_{n+3}F_n - F_{n+2}F_{n+1} = (-1)^{n+1}$

Proof

) When
$$n = 1$$
, we have $F_3F_1 - F_2^2 = 2 \cdot 1 - 1^2 = 1 = (-1)^2$. Assume

$$F_{k+2}F_k - F_{k+1}^2 = (-1)^{k+1}.$$

Then

$$\begin{aligned} F_{k+3}F_{k+1} - F_{k+2}^2 &= (F_{k+2} + F_{k+1})F_{k+1} - F_{k+2}^2 \\ &= F_{k+2}(F_{k+1} - F_{k+2}) + F_{k+1}^2 \\ &= -F_{k+2}F_k + F_{k+1}^2 \\ &= (-1)^{k+2} \text{ (by induction hypothesis)}. \end{aligned}$$

Therefore $F_{n+2}F_n - F_{n+1}^2 = (-1)^{n+1}$ for any $n \ge 1$.

Proof.

The proof for the second statement is basically the same. When n = 1, we have $F_4F_1 - F_3F_2 = 3 \cdot 1 - 2 \cdot 1 = 1 = (-1)^2$. Assume

$$F_{k+3}F_k - F_{k+2}F_{k+1} = (-1)^{k+1}.$$

Then

$$F_{k+4}F_{k+1} - F_{k+3}F_{k+2} = (F_{k+3} + F_{k+2})F_{k+1} - F_{k+3}F_{k+2}$$

= $F_{k+3}(F_{k+1} - F_{k+2}) + F_{k+2}F_{k+1}$
= $-F_{k+3}F_k + F_{k+2}F_{k+1}$
= $-(-1)^{k+1}$ (by induction hypothesis)
= $(-1)^{k+2}$

Therefore $F_{n+3}F_n - F_{n+2}F_{n+1} = (-1)^{n+1}$ for any $n \ge 1$.

Theorem

Let
$$a_n = \frac{F_{n+1}}{F_n}$$

1 The sequence $a_1, a_3, a_5, a_7, \cdots$, is strictly increasing.

2 The sequence $a_2, a_4, a_6, a_8, \cdots$, is strictly decreasing.

Proof.

For any $k \ge 1$, we have

$$a_{2k+1} - a_{2k-1} = \frac{F_{2k+2}}{F_{2k+1}} - \frac{F_{2k}}{F_{2k-1}} = \frac{F_{2k+2}F_{2k-1} - F_{2k+1}F_{2k}}{F_{2k+1}F_{2k-1}}$$
$$= \frac{(-1)^{2k}}{F_{2k+1}F_{2k-1}} = \frac{1}{F_{2k+1}F_{2k-1}} > 0$$

Therefore $a_1, a_3, a_5, a_7, \cdots$, is strictly increasing. The second statement can be proved in a similar way.

Theorem

$$\lim_{k \to \infty} (a_{2k+1} - a_{2k}) = 0$$

Proof.

For any $k \ge 1$,

$$a_{2k+1} - a_{2k} = \frac{F_{2k+2}}{F_{2k+1}} - \frac{F_{2k+1}}{F_{2k}}$$
$$= \frac{F_{2k+2}F_{2k} - F_{2k+1}^2}{F_{2k+1}F_{2k}} = \frac{1}{F_{2k+1}F_{2k}}$$

Therefore

$$\lim_{k \to \infty} (a_{2k+1} - a_{2k}) = \lim_{k \to \infty} \frac{1}{F_{2k+1}F_{2k}} = 0.$$

Theorem

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1 + \sqrt{5}}{2}$$

Proof

First we prove that $a_n = \frac{F_{n+1}}{F_n}$ is convergent. a_n is bounded. ($1 \le a_n \le 2$ for any n.) a_{2k+1} and a_{2k} are convergent. (They are bounded and monotonic.)

$$\lim_{k \to \infty} (a_{2k+1} - a_{2k}) = 0 \Rightarrow \lim_{k \to \infty} a_{2k+1} = \lim_{k \to \infty} a_{2k}$$

It follows that a_n is convergent and

$$\lim_{n \to \infty} a_n = \lim_{k \to \infty} a_{2k+1} = \lim_{k \to \infty} a_{2k}.$$

Limits Differentiation Integration

Sequences Limits of functions Continuity of functions

Proof.

To evaluate the limit, suppose
$$\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = L$$
. Then

$$L = \lim_{n \to \infty} \frac{F_{n+2}}{F_{n+1}} = \lim_{n \to \infty} \frac{F_{n+1} + F_n}{F_{n+1}} = \lim_{n \to \infty} \left(1 + \frac{F_n}{F_{n+1}} \right) = 1 + \frac{1}{L}$$
$$L^2 - L - 1 = 0$$

By solving the quadratic equation, we have

$$L = \frac{1 + \sqrt{5}}{2}$$
 or $\frac{1 - \sqrt{5}}{2}$

We must have $L \ge 1$ since $a_n \ge 1$ for any n. Therefore

$$L = \frac{1 + \sqrt{5}}{2}.$$

56 / 333

()

Remarks

The limit can be calculate directly using the formula

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
$$= \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

where

$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}$$

are the roots of the quadratic equation

$$x^2 - x - 1 = 0.$$

Theorem

Let

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

$$b_n = \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

Then

 $a_n < b_n \text{ for any } n > 1.$

2) a_n and b_n are convergent and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

$$b_n = \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

n	a_n	b_n
1	2	2
5	2.48832	2.716666666666
10	2.593742	2.718281801146
100	2.704813	2.718281828459
100000	2.718268	2.718281828459

The limit of the two sequences is the important Euler's number

 $e \approx 2.71828\,18284\,59045\,23536\ldots$

which is also known as the Napier's constant.

Definition (Convergence of infinite series)

We say that an infinite series

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots$$

is convergent if the sequence of partial sums

 $s_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \dots + a_n$ is convergent. If the infinite series is convergent, then we define

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k.$$

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Limits of functions

Definition (Function)

A real valued function on a subset $D \subset \mathbb{R}$ is a real value f(x) assigned to each of the values $x \in D$. The set D is called the **domain** of the function.

Given an expression f(x) in x, the domain D is understood to be taken as the set of all real numbers x such that f(x) is defined. This is called the maximum domain of definition of f(x).

Definition (Graph of function)

Let f(x) is a real valued function. The graph of f(x) is the set

$$\{(x,y)\in\mathbb{R}^2: y=f(x)\}.$$

Definition

Let $f(\boldsymbol{x})$ be a real valued function and D be its domain. We say that $f(\boldsymbol{x})$ is

- injective if for any $x_1, x_2 \in D$ with $x_1 \neq x_2$, we have $f(x_1) \neq f(x_2)$.
- Surjective if for any real number y ∈ ℝ, there exists x ∈ D such that f(x) = y.
- **3 bijective** if f(x) is both injective and surjective.

Definition

Let f(x) be a real valued function. We say that f(x) is

1 even if
$$f(-x) = f(x)$$
 for any x .

2 odd if f(-x) = -f(x) for any x.

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

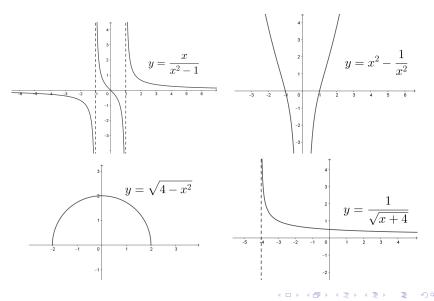
Example

f(x)	Domain	Injective	Surjective	Bijective	Even	Odd
2x - 3	\mathbb{R}	\checkmark	\checkmark	\checkmark	×	×
$x^3 - 2x^2$	R	×	\checkmark	×	×	×
$\frac{1}{x}$	$x \neq 0$	\checkmark	×	×	×	\checkmark
$\frac{4x}{x^2+1}$	R	×	×	×	×	\checkmark
$\frac{x}{x^2 - 1}$	$x \neq \pm 1$	×	\checkmark	×	×	\checkmark
$x^2 - \frac{1}{x^2}$	$x \neq 0$	×	\checkmark	×	\checkmark	×
$\sqrt{4-x^2}$	$-2 \le x \le 2$	×	×	×	\checkmark	×
$\frac{1}{\sqrt{x+4}}$	x > -4	\checkmark	×	×	×	×

メリアメロア メモアメモア しき



64 / 333



65 / 333

Definition (Limit of function)

Let f(x) be a real valued function.

() We say that a real number l is a limit of f(x) at x = a if for any $\epsilon > 0$, there exists $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
, then $|f(x) - l| < \epsilon$

and write

$$\lim_{x \to a} f(x) = l.$$

3 We say that a real number l is a limit of f(x) at $+\infty$ if for any $\epsilon > 0$, there exists R > 0 such that

if
$$x > R$$
, then $|f(x) - l| < \epsilon$

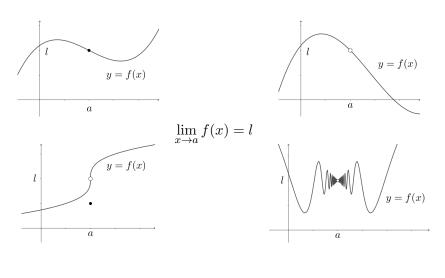
and write

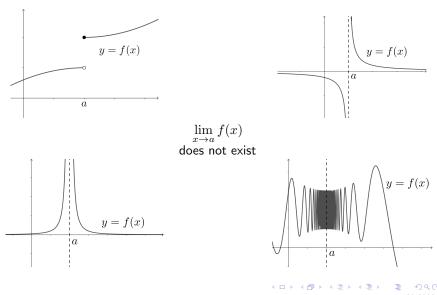
$$\lim_{x \to +\infty} f(x) = l.$$

The limit of f(x) at $-\infty$ is defined similarly.

Limits	Sequences
Differentiation	Limits of functions
Integration	Continuity of functions

- Note that for the limit of f(x) at x = a to exist, f(x) may not be defined at x = a and even if f(a) is defined, the value of f(a) does not affect the value of lim f(x).
- 2 The limit of f(x) at x = a may not exist. However the limit is unique if it exists.





69/333

Limits Sequence Differentiation Limits of Integration Continuit

Sequences Limits of functions Continuity of functions

Theorem (Sequential criterion for limits of functions)

Let f(x) be a real valued function. Then

$$\lim_{x \to a} f(x) = l$$

if and only if for any sequence x_n of real numbers with $\lim_{n\to\infty} x_n = a$, we have

$$\lim_{n \to \infty} f(x_n) = l.$$



Theorem

Let f(x), g(x) be functions such that $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ exist and c be a real number. Then a) $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ a) $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$ b) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$ c) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ if $\lim_{x \to a} g(x) \neq 0$.

Theorem

Let g(u) be a function of u and u = f(x) be a function of x. Suppose

$$\lim_{x \to a} f(x) = b \in [-\infty, +\infty]$$

 $\lim_{u \to b} g(u) = l$

•
$$f(x) \neq b$$
 when $x \neq a$ or $g(b) = l$.

Then

 $\lim_{x \to a} (g \circ f)(x) = l.$

$$x \xrightarrow{f} u = f(x) \xrightarrow{g} (g \circ f)(x) = g(u) = g(f(x))$$

・ロ ・ ・ 一 ・ ・ 注 ト ・ 注 ・ 注 ・ つ へ (* 72 / 333)

Example

1.
$$\lim_{x \to +\infty} \frac{6x^3 + 2x^2 - 5}{2x^3 - 3x + 1} = \lim_{x \to +\infty} \frac{6 + \frac{2}{x} - \frac{5}{x^3}}{2 - \frac{3}{x^2} + \frac{1}{x^3}}$$
$$= \lim_{y \to 0} \frac{6 + 2y - 5y^3}{2 - 3y + y^3}$$
$$= 3$$
2.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2}\right)^{n^2} = \lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^m$$
$$= e$$

< □ > < □ > < 直 > < 直 > < 直 > < 直 > 73/333

Theorem (Squeeze theorem)

Let f(x), g(x), h(x) be real valued functions. Suppose

$${f 0} \ f(x) \leq g(x) \leq h(x)$$
 for any $x
eq a$ on a neighborhood of a , and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l.$$

Then the limit of g(x) at x = a exists and $\lim_{x \to a} g(x) = l$.

Theorem

Suppose

1
$$f(x)$$
 is bounded, and

$$\lim_{x \to a} g(x) = 0$$

Then
$$\lim_{x \to a} f(x)g(x) = 0.$$

Exponential, logarithmic and trigonometric functions

Definition (Exponential function)

The **exponential function** is defined for real number $x \in \mathbb{R}$ by

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}$$

= $1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$

Exponential, logarithmic and trigonometric functions

Definition (Exponential function)

The **exponential function** is defined for real number $x \in \mathbb{R}$ by

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}$$

= $1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$

- It can be proved that the two limits in the definition exist and converge to the same value for any real number x.
- e^x is just a notation for the exponential function. One should not interpret it as 'e to the power x'.

Limits Sequences Differentiation Integration Continuity of functions

Theorem

For any $x, y \in \mathbb{R}$, we have

$$e^{x+y} = e^x e^y.$$

Theorem

For any $x, y \in \mathbb{R}$, we have

$$e^{x+y} = e^x e^y.$$

Caution! One cannot use law of indices to prove the above identity. It is because e^x is just a notation for the exponential function and it does not mean 'e to the power x'. In fact we have not defined what a^x means when x is a real number which is not rational.

Limits Differentiation Integration

Sequences Limits of functions Continuity of functions

Theorem

- $e^x > 0 \ for any \ real \ number \ x.$
- **2** e^x is strictly increasing.

Proof.

Limits Seque Differentiation Limit Integration Cont

Sequences Limits of functions Continuity of functions

Theorem

- **1** $e^x > 0$ for any real number x.
- **2** e^x is strictly increasing.

Proof.

1 For any x > 0, we have $e^x > 1 + x > 1$. If x < 0, then

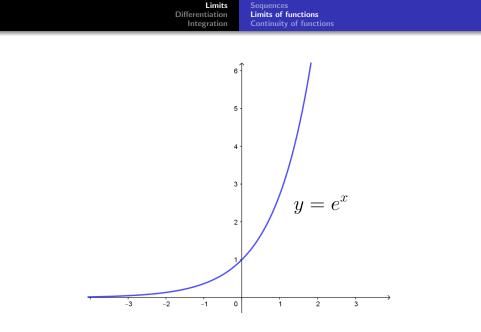
$$e^{x}e^{-x} = e^{x+(-x)} = e^{0} = 1$$

 $e^{x} = \frac{1}{e^{-x}} > 0$

since $e^{-x} > 1$. Therefore $e^x > 0$ for any $x \in \mathbb{R}$.

2 Let x, y be real numbers with x < y. Then y - x > 0 which implies $e^{y-x} > 1$. Therefore

$$e^{y} = e^{x+(y-x)} = e^{x}e^{y-x} > e^{x}$$



<□> <□> <□> <□> <三> <三> <三> <三> <三> <三> <三</td>78/333

Definition (Logarithmic function)

The logarithmic function is the function $\ln:\mathbb{R}^+\to\mathbb{R}$ defined for x>0 by

$$y = \ln x$$
 if $e^y = x$.

In other words, $\ln x$ is the inverse function of e^x .

Definition (Logarithmic function)

The logarithmic function is the function $\ln:\mathbb{R}^+\to\mathbb{R}$ defined for x>0 by

$$y = \ln x$$
 if $e^y = x$.

In other words, $\ln x$ is the inverse function of e^x .

It can be proved that for any x > 0, there exists unique real number y such that $e^y = x$.

Limits	Sequences
Differentiation	Limits of functions
Integration	Continuity of function

Theorem

$$\mathbf{0} \ \ln xy = \ln x + \ln y$$

$$2 \ln \frac{x}{y} = \ln x - \ln y$$

3 $\ln x^n = n \ln x$ for any integer $n \in \mathbb{Z}$.

Proof.

Limits	Sequences
Differentiation	Limits of functions
Integration	Continuity of functions

Theorem

$$2 \ln \frac{x}{y} = \ln x - \ln y$$

3
$$\ln x^n = n \ln x$$
 for any integer $n \in \mathbb{Z}$.

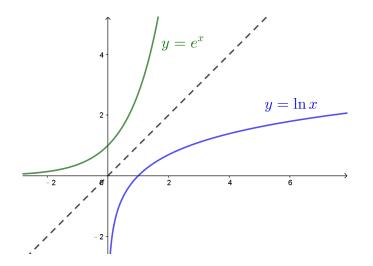
Proof.

1 Let
$$u = \ln x$$
 and $v = \ln y$. Then $x = e^u$, $y = e^v$ and we have

$$xy = e^u e^v = e^{u+v} = e^{\ln x + \ln y}$$

which means $\ln xy = \ln x + \ln y$.

Other parts can be proved similarly.



Definition (Cosine and sine functions)

The cosine and sine functions are defined for real number $x \in \mathbb{R}$ by

Definition (Cosine and sine functions)

The cosine and sine functions are defined for real number $x \in \mathbb{R}$ by the infinite series

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Definition (Cosine and sine functions)

The **cosine** and **sine** functions are defined for real number $x \in \mathbb{R}$ by the infinite series

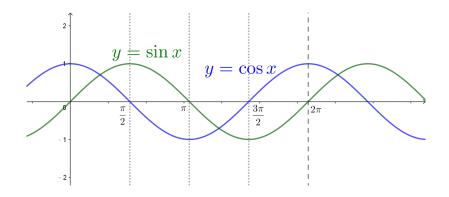
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

- When the sine and cosine are interpreted as trigonometric ratios, the angles are measured in radian. $(180^0 = \pi)$
- 2 The series for cosine and sine are convergent for any real number $x \in \mathbb{R}$.

 Limits
 Sequences

 Differentiation
 Limits of functions

 Integration
 Continuity of functions



4回 > <
日 > <
目 > <
目 > <
日 > <
日 > <
日 > <
日 > <
の へ ()
83 / 333
</p>

There are four more trigonometric functions namely tangent, cotangent, secant and cosecant functions. All of them are defined in terms of sine and cosine.

Definition (Trigonometric functions)

$$\tan x = \frac{\sin x}{\cos x}, \text{ for } x \neq \frac{2k+1}{2}\pi, k \in \mathbb{Z}$$
$$\cot x = \frac{\cos x}{\sin x}, \text{ for } x \neq k\pi, k \in \mathbb{Z}$$
$$\sec x = \frac{1}{\cos x}, \text{ for } x \neq \frac{2k+1}{2}\pi, k \in \mathbb{Z}$$

$$\csc x = \frac{1}{\sin x}$$
, for $x \neq k\pi$, $k \in \mathbb{Z}$

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Theorem (Trigonometric identities)

$$\cos^2 x + \sin^2 x = 1; \quad \sec^2 x - \tan^2 x = 1; \quad \csc^2 x - \cot^2 x = 1 \cos(x + y) = \cos x \cos y \mp \sin x \sin y;$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y;$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

3
$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x;$$

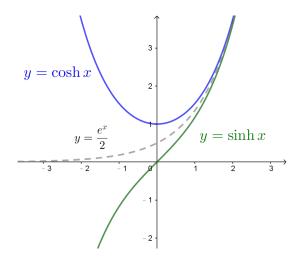
$$\sin 2x = 2 \sin x \cos x;$$
$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$
$$\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$
$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$
$$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

Definition (Hyperbolic function)

The hyperbolic functions are defined for $x \in \mathbb{R}$ by

$$\cosh x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$
$$\sinh x = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$



Theorem (Hyperbolic identities)

$$cosh^2 x - sinh^2 x = 1$$

2
$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$$

 $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$

3
$$\cosh 2x = \cosh^2 x + \sinh^2 x = 2 \cosh^2 x - 1 = 1 + 2 \sinh^2 x;$$

 $\sinh 2x = 2 \sinh x \cosh x$

Theorem

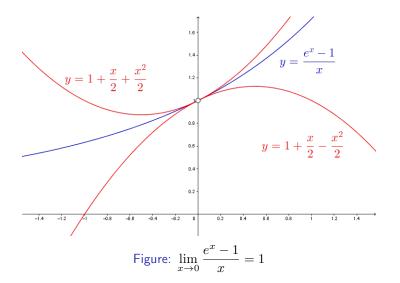
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 2 \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1 3 \lim_{x \to 0} \frac{\sin x}{x} = 1$$

◆□ → < □ → < 三 → < 三 → < 三 → ○ へ ○ 89 / 333

Proof.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

For any -1 < x < 1 with $x \neq 0$, we have

$$\begin{array}{rcl} \displaystyle \frac{e^x-1}{x} &=& 1+\frac{x}{2!}+\frac{x^2}{3!}+\frac{x^3}{4!}+\frac{x^4}{5!}+\cdots \\ &\leq& 1+\frac{x}{2}+\left(\frac{x^2}{4}+\frac{x^2}{8}+\frac{x^2}{16}+\cdots\right)=1+\frac{x}{2}+\frac{x^2}{2} \\ \\ \displaystyle \frac{e^x-1}{x} &=& 1+\frac{x}{2!}+\frac{x^2}{3!}+\frac{x^3}{4!}+\cdots \\ &\geq& 1+\frac{x}{2}-\left(\frac{x^2}{4}+\frac{x^2}{8}+\frac{x^2}{16}+\cdots\right)=1+\frac{x}{2}-\frac{x^2}{2} \\ \\ \\ \mbox{and } \lim_{x\to 0}(1+\frac{x}{2}+\frac{x^2}{2})=\lim_{x\to 0}(1+\frac{x}{2}-\frac{x^2}{2})=1. \mbox{ Therefore } \lim_{x\to 0}\frac{e^x-1}{x}=1. \ \ \Box \end{array}$$



 Limits
 Sequences

 Differentiation
 Limits of functions

 Integration
 Continuity of functions

Proof.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Let $y = \ln(1+x)$. Then
$$e^y = 1+x$$
$$x = e^y - 1$$
and $x \to 0$ as $y \to 0$. We have
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{y \to 0} \frac{y}{e^y - 1}$$
$$= 1$$

Proof.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Let $y = \ln(1+x)$. Then
$$e^y = 1+x$$
$$x = e^y - 1$$
and $x \to 0$ as $y \to 0$. We have
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{y \to 0} \frac{y}{e^y - 1}$$
$$= 1$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

92 / 333

Note that the first part implies $\lim_{y \to 0} (e^y - 1) = 0.$

Proof.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Note that

$$\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \frac{x^8}{9!} - \frac{x^{10}}{11!} + \cdots$$

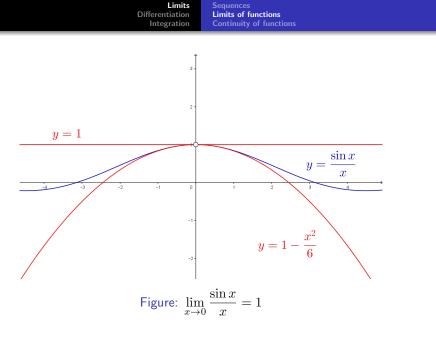
For any -1 < x < 1 with $x \neq 0$, we have

$$\frac{\sin x}{x} = 1 - \left(\frac{x^2}{3!} - \frac{x^4}{5!}\right) - \left(\frac{x^6}{7!} - \frac{x^8}{9!}\right) - \dots \le 1$$
$$\frac{\sin x}{x} = 1 - \frac{x^2}{6} + \left(\frac{x^4}{5!} - \frac{x^6}{7!}\right) + \left(\frac{x^8}{9!} - \frac{x^{10}}{11!}\right) + \dots \ge 1 - \frac{x^2}{6}$$

and $\lim_{x\rightarrow 0}1=\lim_{x\rightarrow 0}(1-\frac{x^2}{6})=1.$ Therefore

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Limits Differentiation

Limits of functions

Theorem

Let k be a positive integer.

$$\lim_{x \to +\infty} \frac{x^k}{e^x} = 0$$

$$\lim_{x \to +\infty} \frac{(\ln x)^k}{x} = 0$$

Limits Se Differentiation Lin Integration Co

Sequences Limits of functions Continuity of functions

Proof.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots > \frac{x^{k+1}}{(k+1)!}$$

and thus

$$0 < \frac{x^k}{e^x} < \frac{(k+1)!}{x}$$

Moreover $\lim_{x \to +\infty} \frac{(k+1)!}{x} = 0$. Therefore

$$\lim_{k \to +\infty} \frac{x^k}{e^x} = 0.$$

2 Let $x = e^y$. Then $x \to +\infty$ as $y \to +\infty$ and $\ln x = y$. We have

x

$$\lim_{x \to +\infty} \frac{(\ln x)^k}{x} = \lim_{y \to +\infty} \frac{y^k}{e^y} = 0.$$

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Example

$$1. \lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2} = \lim_{x \to 4} \frac{(x - 4)(x + 4)(\sqrt{x} + 2)}{(\sqrt{x} - 2)(\sqrt{x} + 2)} \\ = \lim_{x \to 4} \frac{(x - 4)(x + 4)(\sqrt{x} + 2)}{x - 4} \\ = \lim_{x \to 4} (x + 4)(\sqrt{x} + 2) = 32 \\ 2. \lim_{x \to +\infty} \frac{3e^{2x} + e^x - x^4}{4e^{2x} - 5e^x + 2x^4} = \lim_{x \to +\infty} \frac{3 + e^{-x} - x^4 e^{-2x}}{4 - 5e^{-x} + 2x^4 e^{-2x}} = \frac{3}{4} \\ 3. \lim_{x \to +\infty} \frac{\ln(2e^{4x} + x^3)}{\ln(3e^{2x} + 4x^5)} = \lim_{x \to +\infty} \frac{4x + \ln(2 + x^3 e^{-4x})}{2x + \ln(3 + 4x^5 e^{-2x})} \\ = \lim_{x \to +\infty} \frac{4 + \frac{\ln(2 + x^3 e^{-4x})}{2x + \ln(3 + 4x^5 e^{-2x})}} = 2 \\ 4. \lim_{x \to -\infty} (x + \sqrt{x^2 - 2x}) = \lim_{x \to -\infty} \frac{(x + \sqrt{x^2 - 2x})(x - \sqrt{x^2 - 2x})}{x - \sqrt{x^2 - 2x}} \\ = \lim_{x \to -\infty} \frac{2x}{1 + \sqrt{1 - \frac{2}{x}}} = 1 \\ \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Example

$$5. \lim_{x \to 0} \frac{\sin 6x - \sin x}{\sin 4x - \sin 3x} = \lim_{x \to 0} \frac{\frac{6 \sin 6x}{4 \sin 4x} - \frac{\sin x}{3 \sin 3x}}{\frac{4 \sin 4x}{4x} - \frac{3 \sin 3x}{3x}} = \frac{6 - 1}{4 - 3} = 5$$

$$6. \lim_{x \to 0} \frac{1 - \cos x}{x \tan x} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x \frac{\sin x}{\cos x}(1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{(1 - \cos^2 x) \cos x}{x \sin x(1 + \cos x)}$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x}\right) \frac{\cos x}{1 + \cos x} = \frac{1}{2}$$

$$7. \lim_{x \to 0} \frac{e^{2x} - 1}{\ln(1 + 3x)} = \lim_{x \to 0} \frac{2}{3} \cdot \frac{e^{2x} - 1}{2x} \cdot \frac{3x}{\ln(1 + 3x)} = \frac{2}{3}$$

$$8. \lim_{x \to 0} \frac{x \ln(1 + \sin x)}{1 - \sqrt{\cos x}} = \lim_{x \to 0} \frac{x(1 + \sqrt{\cos x})(1 + \cos x) \ln(1 + \sin x)}{1 - \cos^2 x}$$

$$= \lim_{x \to 0} \frac{x}{\sin x} \cdot \frac{\ln(1 + \sin x)}{\sin x}(1 + \sqrt{\cos x})(1 + \cos x)$$

Definition (Continuity)

Let $f(\boldsymbol{x})$ be a real valued function. We say that $f(\boldsymbol{x})$ is continuous at $\boldsymbol{x}=\boldsymbol{a}$ if

$$\lim_{x \to a} f(x) = f(a).$$

In other words, f(x) is continuous at x=a if for any $\epsilon>0,$ there exists $\delta>0$ such that

$$\text{if } |x-a| < \delta \text{, then } |f(x) - f(a)| < \epsilon.$$

We say that f(x) is continuous on an interval in \mathbb{R} if f(x) is continuous at every point on the interval.

Theorem

Let g(u) be a function in u and u = f(x) be a function in x. Suppose g(u) is continuous and the limit of f(x) at x = a exists. Then

$$\lim_{x \to a} (g \circ f)(x) = \lim_{x \to a} g(f(x)) = g\left(\lim_{x \to a} f(x)\right).$$

$$x \xrightarrow{f} u = f(x) \xrightarrow{g} (g \circ f)(x) = g(u) = g(f(x))$$

・ロ ・ ・ 日 ・ ・ 目 ・ 日 ・ 日 ・ 日 の へ (* 100 / 333)

Theorem

- For any non-negative integer n, $f(x) = x^n$ is continuous on \mathbb{R} .
- 2 The functions e^x , $\cos x$, $\sin x$ are continuous on \mathbb{R} .
- **3** The logarithmic function $\ln x$ is continuous on \mathbb{R}^+ .

Theorem

Suppose f(x), g(x) are continuous functions and c is a real number. Then the following functions are continuous.

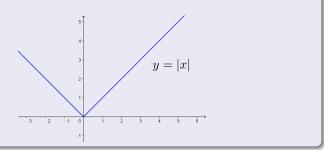
- **1** f(x) + g(x)
- cf(x)
- (x)g(x)
- $\frac{f(x)}{g(x)}$ at the points where $g(x) \neq 0$.
- $(f \circ g)(x)$

Limits	Sequences
Differentiation	Limits of functions
Integration	Continuity of functions

Definition

The **absolute value** of $x \in \mathbb{R}$ is defined by

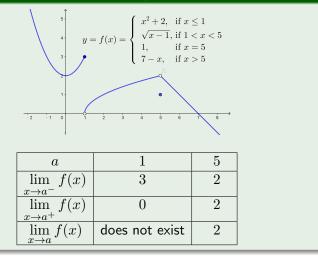
$$|x| = \begin{cases} -x, & \text{if } x < 0\\ x, & \text{if } x \ge 0 \end{cases}$$

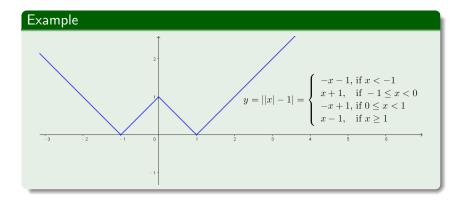


<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 103 / 333

Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Example (Piecewise defined function)





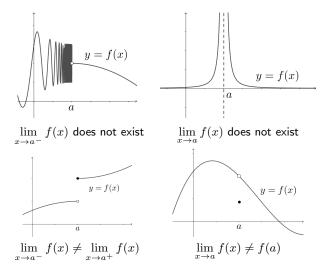
Theorem

A function f(x) is continuous at x = a if

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a).$$

The theorem is usually used to check whether a piecewise defined function is continuous.

The following functions are not continuous at x = a.



Example

Given that the function

$$f(x) = \begin{cases} 2x - 1 & \text{if } x < 2\\ a & \text{if } x = 2\\ x^2 + b & \text{if } x > 2 \end{cases}$$

is continuous at x = 2. Find the value of a and b.

Solution

Note that

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2x - 1) = 3$$
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^{2} + b) = 4 + b$$
$$f(2) = a$$

Since f(x) is continuous at x = 2, we have 3 = 4 + b = a which implies a = 3 and b = -1.

Limits Seq Differentiation Lim Integration Cor

Sequences Limits of functions Continuity of functions

Example

Prove that the function

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

is not continuous at x = 0.

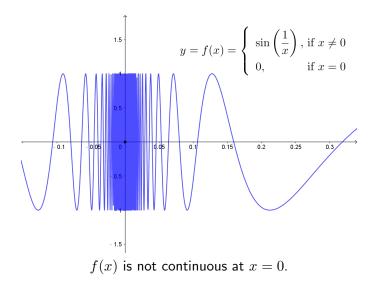
Proof.

Let
$$x_n = \frac{2}{(2n+1)\pi}$$
 for $n = 1, 2, 3, ...$ Then $\lim_{n \to \infty} x_n = 0$ and

$$f(x_n) = \sin\left(\frac{(2n+1)\pi}{2}\right) = (-1)^n.$$

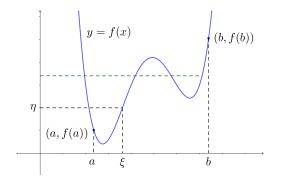
Thus $\lim_{n \to \infty} f(x_n)$ does not exist. Therefore f(x) is not continuous at x = 0.

109 / 333



Theorem (Intermediate value theorem)

Suppose f(x) is a function which is **continuous** on [a,b]. Then for any real number η between f(a) and f(b), there exists $\xi \in (a,b)$ such that $f(\xi) = \eta$.

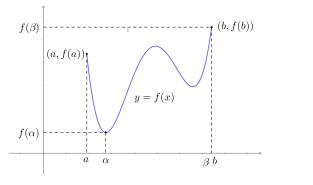


Limits Differentiation Integration Sequences Limits of functions Continuity of functions

Theorem (Extreme value theorem)

Suppose f(x) is a function which is **continuous** on a **closed** and **bounded** interval [a,b]. Then there exists $\alpha, \beta \in [a,b]$ such that

 $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in [a, b]$.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Derivatives Mean value theorem Application of Differentiation

Differentiable functions

Definition (Differentiable function)

Let f(x) be a function. Denote

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

and we say that f(x) is **differentiable** at x = a if the above limit exists. We say that f(x) is differentiable on (a, b) if f(x) is differentiable at every point in (a, b).

The above limit can also be written as

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

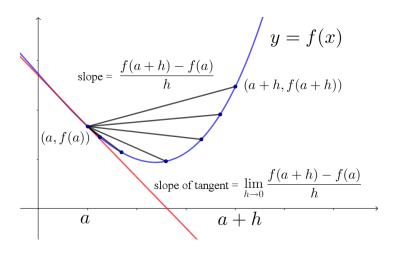
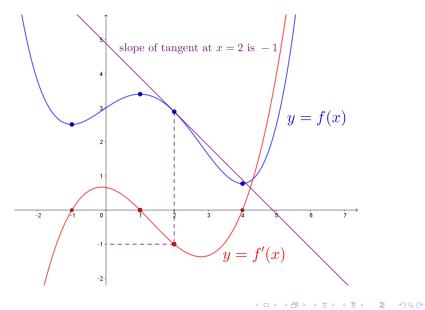


Figure: Definition of derivative



115/333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Theorem

If f(x) differentiable at x = a, then f(x) is continuous at x = a.

Differentiable at $x = a \Rightarrow$ Continuous at x = a

Proof.

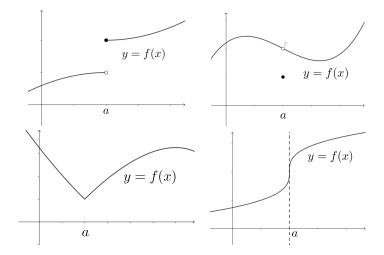
Suppose f(x) is differentiable at x = a. Then

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right) (x - a)$$
$$= \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right) \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0 = 0$$

Therefore f(x) is continuous at x = a.

Note that the converse of the above theorem does not hold. The function f(x) = |x| is continuous but not differentiable at 0.

The following functions are not differentiable at x = a.



(ロ)、(部)、(注)、(注)、(注)、(注)、(注)、(117/333)

Limits Derivatives Differentiation Integration Application of Different

Example

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Find the values of
$$a, b$$
 if $f(x) = \begin{cases} 4x - 1, & \text{if } x \leq 1 \\ ax^2 + bx, & \text{if } x > 1 \end{cases}$ is differentiable at $x = 1$.

Solution: Since $f(\boldsymbol{x})$ is differentiable at $\boldsymbol{x}=1,$ $f(\boldsymbol{x})$ is continuous at $\boldsymbol{x}=1$ and we have

$$\lim_{x \to 1^+} f(x) = f(1) \Rightarrow \lim_{x \to 1^+} (ax^2 + bx) = a + b = 3.$$

Moreover, f(x) is differentiable at x = 1 and we have

$$\begin{split} \lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} &= \lim_{h \to 0^{-}} \frac{(4(1+h) - 1) - 3}{h} = 4\\ \lim_{h \to 0^{+}} \frac{f(1+h) - f(1)}{h} &= \lim_{h \to 0^{+}} \frac{a(1+h)^2 - b(1+h) - 3}{h} = 2a + b \end{split}$$

Therefore
$$\begin{cases} a+b=3\\ 2a+b=4 \end{cases} \Rightarrow \begin{cases} a=1\\ b=2 \end{cases}.$$

Definition (First derivative)

Let y = f(x) be a differentiable function on (a, b). The first derivative of f(x) is the function on (a, b) defined by

$$\frac{dy}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Theorem

Let f(x) and g(x) be differentiable functions and c be a real number. Then

Theorem

•
$$\frac{d}{dx}x^n = nx^{n-1}, n \in \mathbb{Z}^+, \text{ for } x \in \mathbb{R}$$

• $\frac{d}{dx}e^x = e^x \text{ for } x \in \mathbb{R}$
• $\frac{d}{dx}\ln x = \frac{1}{x} \text{ for } x > 0$
• $\frac{d}{dx}\cos x = -\sin x \text{ for } x \in \mathbb{R}$
• $\frac{d}{dx}\sin x = \cos x \text{ for } x \in \mathbb{R}$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Proof
$$(\frac{d}{dx}x^n = nx^{n-1})$$

Let $y = x^n$. For any $x \in \mathbb{R}$, we have
 $\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$
 $= \lim_{h \to 0} \frac{(x+h-x)((x+h)^{n-1} + (x+h)^{n-2}x + \dots + x^{n-1})}{h}$
 $= \lim_{h \to 0} ((x+h)^{n-1} + (x+h)^{n-2}x + \dots + x^{n-1})$
 $= nx^{n-1}$

Note that the above proof is valid only when $n\in \mathbb{Z}^+$ is a positive integer.

Proof
$$\left(\frac{d}{dx}e^x = e^x\right)$$

Let $y = e^x$. For any $x \in \mathbb{R}$, we have

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x(e^h - 1)}{h} = e^x.$$

(Alternative proof)

$$\frac{dy}{dx} = \frac{d}{dx} \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \right)$$
$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^2}{3!} + \frac{4x^3}{4!} + \cdots$$
$$= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
$$= e^x$$

In general, differentiation cannot be applied term by term to infinite series. The second proof is valid only after we prove that this can be done to **power series**.

Limits Derivatives Differentiation Integration Application of Different

Proof

$$\left(\frac{d}{dx}\ln x = \frac{1}{x}\right)$$
 Let $f(x) = \ln x$. For any $x > 0$, we have

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \lim_{h \to 0} \frac{\ln\left(1 + \frac{h}{x}\right)}{h} = \frac{1}{x}.$$

$$\left(rac{d}{dx}\cos x = -\sin x
ight)$$
 Let $f(x) = \cos x$. For any $x \in \mathbb{R}$, we have

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{-2\sin\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{h} = -\sin x.$$

$$\left(\frac{d}{dx}\sin x = \cos x\right)$$
 Let $f(x) = \sin x$. For any $x \in \mathbb{R}$, we have

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{2\cos\left(x + \frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{h} = \cos x.$$

Definition

Let a > 0 be a positive real number. For $x \in \mathbb{R}$, we define

$$a^x = e^{x \ln a}.$$

Theorem

Let a > 0 be a positive real number. We have

Proof.

1
$$a^{x+y} = e^{(x+y)\ln a} = e^{x\ln a} e^{y\ln a} = a^x a^y$$
 2 $\frac{d}{dx}a^x = \frac{d}{dx}e^{x\ln a} = e^{x\ln a}\ln a = a^x\ln a$

Example

Let f(x) = |x| for $x \in \mathbb{R}$. Show that f(x) is not differentiable at x = 0.

Proof.

Observe that

$$\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$
$$\lim_{h \to 0^{+}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1$$

Thus the limit

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

does not exist. Therefore f(x) is not differentiable at x = 0.

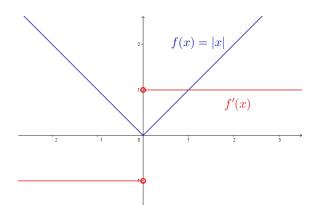


Figure: f(x) = |x| is not differentiable at x = 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Exercise (True or False)

Suppose f(x) is bounded and is differentiable on (a,b). Then

• f'(x) is differentiable on (a, b). Answer:

Exercise (True or False)

Suppose f(x) is bounded and is differentiable on (a,b). Then

- f'(x) is differentiable on (a,b).
 Answer: F
- If f'(x) is continuous on (a, b). Answer:

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

128 / 333

Exercise (True or False)

Suppose f(x) is bounded and is differentiable on (a,b). Then

- f'(x) is differentiable on (a,b).
 Answer: F
- **2** f'(x) is continuous on (a,b). **Answer: F**
- 3 f'(x) is bounded on (a,b). Answer:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

128 / 333

Exercise (True or False)

Suppose f(x) is bounded and is differentiable on (a,b). Then

- f'(x) is differentiable on (a,b).
 Answer: F
- **2** f'(x) is continuous on (a,b). **Answer: F**
- 3 f'(x) is bounded on (a, b). Answer: F

Example

Let f(x) = |x|x for $x \in \mathbb{R}$. Find f'(x).

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Let f(x) = |x|x for $x \in \mathbb{R}$. Find f'(x).

Solution: When x < 0, $f(x) = -x^2$ and f'(x) = -2x. When x > 0, $f(x) = x^2$ and f'(x) = 2x. When x = 0, we have

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Let f(x) = |x|x for $x \in \mathbb{R}$. Find f'(x).

Solution: When x < 0, $f(x) = -x^2$ and f'(x) = -2x. When x > 0, $f(x) = x^2$ and f'(x) = 2x. When x = 0, we have

$$\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{-h^2 - 0}{h} = 0$$
$$\lim_{h \to 0^{+}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{+}} \frac{h^2 - 0}{h} = 0$$

Thus f'(0) = 0. Therefore $f'(x) = \begin{cases} -2x, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ 2x, & \text{if } x > 0 \end{cases}$ = 2|x|.

> <ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 129 / 333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

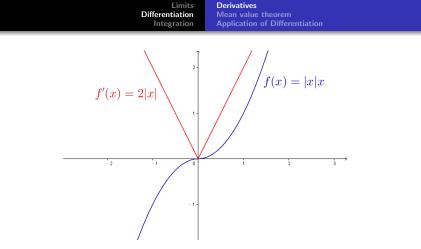
Let f(x) = |x|x for $x \in \mathbb{R}$. Find f'(x).

Solution: When x < 0, $f(x) = -x^2$ and f'(x) = -2x. When x > 0, $f(x) = x^2$ and f'(x) = 2x. When x = 0, we have

$$\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{-h^2 - 0}{h} = 0$$
$$\lim_{h \to 0^{+}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{+}} \frac{h^2 - 0}{h} = 0$$

Thus f'(0) = 0. Therefore $f'(x) = \begin{cases} -2x, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ 2x, & \text{if } x > 0 \end{cases}$ = 2|x|.

Note that f'(x) = 2|x| is continuous at x = 0.



- f(x) is differentiable at x = 0. (f(x) is differentiable on \mathbb{R} .)
- f'(x) is continuous on \mathbb{R} .
- f'(x) is not differentiable at x = 0.

Example

Let

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}.$$

• Find f'(x) for $x \neq 0$.

2 Determine whether f(x) is differentiable at x = 0.

Solution

Example

Let

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

1 Find f'(x) for $x \neq 0$.

2 Determine whether f(x) is differentiable at x = 0.

Solution

1. When $x \neq 0$,

$$f'(x) = \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x}.$$

Example

Let

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}.$$

Solution

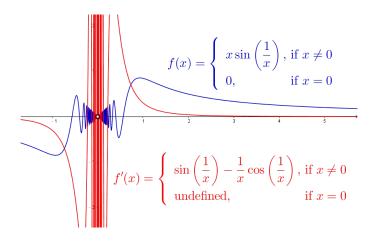
1. When $x \neq 0$,

$$f'(x) = \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x}.$$

2. We have

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h \sin \frac{1}{h}}{h} = \lim_{h \to 0} \sin \frac{1}{h}$$

does not exist. Therefore f(x) is not differentiable at x = 0.



• f(x) is not differentiable at x = 0.

Example

Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}.$$

 \mathbf{r} 0

-ind
$$f'(x)$$
.

2 Determine whether f'(x) is continuous at x = 0.

Solution

Example

Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}.$$

• Find f'(x).

Determine whether
$$f'(x)$$
 is continuous at $x =$

Solution

1. When $x \neq 0$, we have

$$f'(x) = 2x\sin\frac{1}{x} + x^2\left(-\frac{1}{x^2}\cos\frac{1}{x}\right) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}.$$

0.

Solution

2. When x = 0, we have

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h}}{h} = \lim_{h \to 0} h \sin \frac{1}{h}.$$

Solution

2. When x = 0, we have

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h}}{h} = \lim_{h \to 0} h \sin \frac{1}{h}.$$

Since $\lim_{h\to 0} h = 0$ and $|\sin \frac{1}{h}| \le 1$ is bounded, we have f'(0) = 0.

Solution

2. When x = 0, we have

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h}}{h} = \lim_{h \to 0} h \sin \frac{1}{h}.$$

Since $\lim_{h \to 0} h = 0$ and $|\sin \frac{1}{h}| \le 1$ is bounded, we have f'(0) = 0. Therefore

$$f'(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

Solution

2. When x = 0, we have

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h}}{h} = \lim_{h \to 0} h \sin \frac{1}{h}.$$

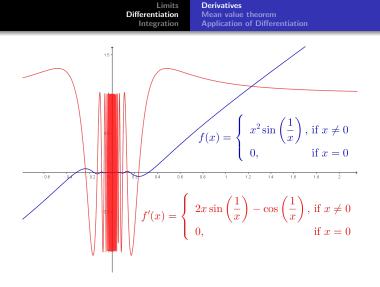
Since $\lim_{h \to 0} h = 0$ and $|\sin \frac{1}{h}| \le 1$ is bounded, we have f'(0) = 0. Therefore

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

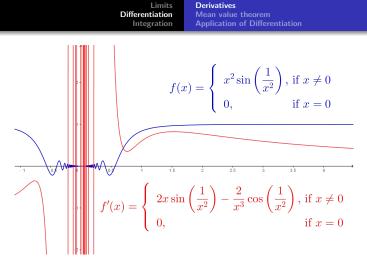
Observe that

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(2x \sin \frac{1}{x} - \cos \frac{1}{x} \right)$$

does not exist. We conclude that f'(x) is not continuous at x = 0.



- f'(0) = 0 (f(x) is differentiable on \mathbb{R})
- f'(x) is not continuous at x = 0



- f'(0) = 0 (f(x) is differentiable on \mathbb{R})
- f'(x) is not continuous at x = 0
- f'(x) is not bounded near x = 0

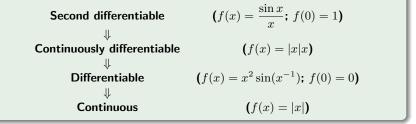
Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example

f(x)	f(x) is continuous at $x = 0$	f(x) is differentiable at $x = 0$	f'(x) is continuous at $x = 0$
x	Yes	No	Not applicable
x x	Yes	Yes	Yes
$x\sin\left(\frac{1}{x}\right); f(0) = 0$	Yes	No	Not applicable
$x^2 \sin\left(\frac{1}{x}\right); f(0) = 0$	Yes	Yes	No

Example

The following diagram shows the relations between the existence of limit, continuity and differentiability of a function at a point a. (Examples in the bracket is for a = 0.)



Limits Differentiation Integration Derivatives Mean value theorem Application of Differentiation

Rules of differentiation

Theorem (Basic formulas for differentiation)

$$\frac{d}{dx}x^{n} = nx^{n-1}$$

$$\frac{d}{dx}e^{x} = e^{x} \qquad \qquad \frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}\sin x = \cos x \qquad \qquad \frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\tan x = \sec^{2} x \qquad \qquad \frac{d}{dx}\cot x = -\csc^{2} x$$

$$\frac{d}{dx}\sec x = \sec x \tan x \qquad \qquad \frac{d}{dx}\csc x = -\csc x \cot x$$

$$\frac{d}{dx}\cosh x = \sinh x \qquad \qquad \frac{d}{dx}\sinh x = \cosh x$$

139 / 333

2

イロン 不得と イヨン イヨン

Limits Differentiation Integration Derivatives Mean value theorem Application of Differentiation

Theorem (Product rule and quotient rule)

Let u and v be differentiable functions of x. Then

$$\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$$
$$\frac{d}{dx}\frac{u}{v} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Proof

Let
$$u = f(x)$$
 and $v = g(x)$.

$$\frac{d}{dx}uv = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \frac{f(x+h)g(x) - f(x)g(x)}{h}\right)$$

$$= \lim_{h \to 0} \left(f(x+h) \cdot \frac{g(x+h) - g(x)}{h} + g(x) \cdot \frac{f(x+h) - f(x)}{h}\right)$$

$$= u\frac{dv}{dx} + v\frac{du}{dx}$$

140 / 333

Proof.

$$\begin{aligned} \frac{d}{dx} \frac{u}{v} &= \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x+h)}{hg(x)g(x+h)} \\ &= \lim_{h \to 0} \left(\frac{f(x+h)g(x) - f(x)g(x)}{hg(x)g(x+h)} - \frac{f(x)g(x+h) - f(x)g(x)}{hg(x)g(x+h)} \right) \\ &= \lim_{h \to 0} \left(g(x) \cdot \frac{f(x+h) - f(x)}{hg(x)g(x+h)} - f(x) \cdot \frac{g(x+h) - g(x)}{hg(x)g(x+h)} \right) \\ &= \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \end{aligned}$$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ ()
141 / 333

Theorem (Chain rule)

Let y = f(u) be a function of u and u = g(x) be a function of x. Suppose g(x) is differentiable at x = a and f(u) is differentiation at u = g(a). Then $f \circ g(x) = f(g(x))$ is differentiable at x = a and

$$(f \circ g)'(a) = f'(g(a))g'(a).$$

In other words,

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$$

・ロ ・ ・ 一 ・ ・ 注 ト ・ 注 ・ 注 ・ つ へ (*)
142 / 333

Limits D Differentiation M Integration A

Derivatives Mean value theorem Application of Differentiation

Proof

$$\begin{array}{ll} (f \circ g)'(a) \\ = & \lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{h} \\ = & \lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{g(a+h) - g(a)} \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} \\ = & \lim_{k \to 0} \frac{f(g(a) + k) - f(g(a))}{k} \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} \\ (Note that g(a+h) - g(a) = k \to 0 \text{ as } h \to 0 \text{ because } g(x) \text{ is continuous.}) \\ = & f'(g(a))g'(a) \end{array}$$

Limits D Differentiation M Integration A

Derivatives Mean value theorem Application of Differentiation

Proof

$$\begin{aligned} &(f \circ g)'(a) \\ &= \lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{h} \\ &= \lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{g(a+h) - g(a)} \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} \\ &= \lim_{k \to 0} \frac{f(g(a) + k) - f(g(a))}{k} \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} \\ &(\text{Note that } g(a+h) - g(a) = k \to 0 \text{ as } h \to 0 \text{ because } g(x) \text{ is continuous.}) \\ &= f'(g(a))g'(a) \end{aligned}$$

The above proof is valid only if $g(a+h) - g(a) \neq 0$ whenever h is sufficiently close to 0. This is true when $g'(a) \neq 0$ because of the following proposition.

Proposition

Suppose g(x) is a function such that $g'(a) \neq 0$. Then there exists $\delta > 0$ such that if $0 < |h| < \delta$, then

 $g(a+h) - g(a) \neq 0.$

э

イロト イポト イヨト イヨト

When g'(a) = 0, we need another proposition.

Proposition

Suppose f(u) is a function which is differentiable at u=b. Then there exists $\delta>0$ and M>0 such that

 $|f(b+h) - f(b)| < M|h| \text{ for any } |h| < \delta.$

The proof of chain rule when g'(a)=0 goes as follows. There exists $\delta>0$ such that

$$|f(g(a+h)) - f(g(a))| < M|g(a+h) - g(a)| \text{ for any } |h| < \delta.$$

Therefore

$$\lim_{h \to 0} \left| \frac{f(g(a+h)) - f(g(a))}{h} \right| \le \lim_{h \to 0} M \left| \frac{g(a+h) - g(a)}{h} \right| = 0$$

which implies $(f \circ g)'(a) = 0$.

Example

The chain rule is used in the following way. Suppose \boldsymbol{u} is a differentiable function of $\boldsymbol{x}.$ Then

$\frac{d}{dx}u^n$	=	$nu^{n-1}\frac{du}{dx}$
$\frac{d}{dx}e^u$	=	$e^u \frac{du}{dx}$
$\frac{d}{dx}\ln u$	=	$\frac{1}{u}\frac{du}{dx}$
$\frac{d}{dx}\cos u$	=	$-\sin u \frac{du}{dx}$
$\frac{d}{dx}\sin u$	=	$\cos u \frac{du}{dx}$

Example

$$1. \frac{d}{dx} \sin^3 x = 3 \sin^2 x \frac{d}{dx} \sin x = 3 \sin^2 x \cos x$$

$$2. \frac{d}{dx} e^{\sqrt{x}} = e^{\sqrt{x}} \frac{d}{dx} \sqrt{x} = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$$

$$3. \frac{d}{dx} \frac{1}{(\ln x)^2} = -\frac{2}{(\ln x)^3} \frac{d}{dx} \ln x = -\frac{2}{x(\ln x)^3}$$

$$4. \frac{d}{dx} \ln \cos 2x = \frac{1}{\cos 2x} (-\sin 2x) \cdot 2 = -\frac{2 \sin 2x}{\cos 2x} = -2 \tan 2x$$

$$5. \frac{d}{dx} \tan \sqrt{1+x^2} = \sec^2 \sqrt{1+x^2} \cdot \frac{1}{2\sqrt{1+x^2}} \cdot 2x = \frac{x \sec^2 \sqrt{1+x^2}}{\sqrt{1+x^2}}$$

$$6. \frac{d}{dx} \sec^3 \sqrt{\sin x} = 3 \sec^2 \sqrt{\sin x} (\sec \sqrt{\sin x} \tan \sqrt{\sin x}) \frac{1}{2\sqrt{\sin x}} \cdot \cos x$$

$$= \frac{3 \sec^3 \sqrt{\sin x} \tan \sqrt{\sin x} \cos x}{2\sqrt{\sin x}}$$

Example

$$7. \frac{d}{dx} \cos^4 x \sin x = \cos^4 x \cos x + 4 \cos^3 x (-\sin x) \sin x$$

$$= \cos^5 x - 4 \cos^3 x \sin^2 x$$

$$8. \frac{d}{dx} \frac{\sec 2x}{\ln x} = \frac{\ln x (2 \sec 2x \tan 2x) - \sec 2x (\frac{1}{x})}{(\ln x)^2}$$

$$= \frac{\sec 2x (2x \tan 2x \ln x - 1)}{x (\ln x)^2}$$

$$9. e^{\frac{\tan x}{x}} = e^{\frac{\tan x}{x}} \left(\frac{x \sec^2 x - \tan x}{x^2}\right)$$

$$10. \sin\left(\frac{\ln x}{\sqrt{1+x^2}}\right) = \cos\left(\frac{\ln x}{\sqrt{1+x^2}}\right) \left(\frac{\sqrt{1+x^2}(\frac{1}{x}) - \ln x(\frac{2x}{2\sqrt{1+x^2}})}{1+x^2}\right)$$

$$= \left(\frac{1+x^2-x^2 \ln x}{x(1+x^2)^{\frac{3}{2}}}\right) \cos\left(\frac{\ln x}{\sqrt{1+x^2}}\right)$$

・ロ ・ ・ (部 ・ ・ き ・ き ・ き ・ う へ (や 147 / 333)

Definition (Implicit functions)

An implicit function is an equation of the form F(x, y) = 0. An implicit function may not define a function. Sometimes it defines a function when the domain and range are specified.

Theorem

Let F(x,y) = 0 be an implicit function. Then

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$$

and we have

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Here $\frac{\partial F}{\partial x}$ is called the partial derivative of F with respect to x which is the derivative of F with respect to x while considering y as constant. Similarly the partial derivative $\frac{\partial F}{\partial y}$ is the derivative of F with respect to y while considering x as constant.

Example Find $\frac{dy}{dx}$ for the following implicit functions. (1) $x^2 - xy - xy^2 = 0$ (2) $\cos(xe^y) + x^2 \tan y = 1$

Solution

1.
$$2x - (y + xy') - (y^2 + 2xyy') = 0$$

 $xy' + 2xyy' = 2x - y - y^2$
 $y' = \frac{2x - y - y^2}{x + 2xy}$
2. $-\sin(xe^y)(e^y + xe^yy') + 2x \tan y + x^2 \sec^2 yy' = 0$
 $x^2 \sec^2 yy' - xe^y \sin(xe^y)y' = e^y \sin(xe^y) - 2x \tan y$
 $y' = \frac{e^y \sin(xe^y) - 2x \tan y}{x^2 \sec^2 y - xe^y \sin(xe^y)}$

<ロト <回ト <国ト < 国ト < 国ト < 国ト 目 の Q (~ 149 / 333

Theorem

Suppose f(y) is a differentiable function with $f'(y) \neq 0$ for any y. Then the inverse function $y = f^{-1}(x)$ of f(y) is differentiable and

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

In other words,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}.$$

Proof.

$$f(f^{-1}(x)) = x$$

$$f'(f^{-1}(x))(f^{-1})'(x) = 1$$

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

150 / 333

Theorem

1 For sin⁻¹:
$$[-1, 1] \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$
,
$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}.$$
2 For cos⁻¹: $[-1, 1] \rightarrow [0, \pi]$,
$$\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^2}}.$$
3 For tan⁻¹: $\mathbb{R} \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$,
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}.$$

Proof.

1

$$y = \sin^{-1} x$$

$$\sin y = x$$

$$\cos y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

$$= \frac{1}{\sqrt{1 - \sin^2 y}} \text{ (Note: } \cos y \ge 0 \text{ for } -\frac{\pi}{2} \le y \le \frac{\pi}{2}\text{)}$$

$$= \frac{1}{\sqrt{1 - x^2}}$$

The other parts can be proved similarly.

Limits Der Differentiation Mea Integration App

Derivatives Mean value theorem Application of Differentiation

Example

Find
$$\frac{dy}{dx}$$
 if $y = x^x$.

Solution

There are 2 methods.

Limits Derivat Differentiation Mean v Integration Applica

Derivatives Mean value theorem Application of Differentiation

Example

Find
$$\frac{dy}{dx}$$
 if $y = x^x$.

Solution

There are 2 methods. Method 1. Note that $y = x^x = e^{x \ln x}$. Thus

$$\frac{dy}{dx} = e^{x \ln x} (1 + \ln x) = x^x (1 + \ln x)$$

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q () 153 / 333 Limits Derivat Differentiation Mean v Integration Applica

Derivatives Mean value theorem Application of Differentiation

Example

Find
$$\frac{dy}{dx}$$
 if $y = x^x$.

Solution

There are 2 methods. Method 1. Note that $y = x^x = e^{x \ln x}$. Thus

$$\frac{dy}{dx} = e^{x \ln x} (1 + \ln x) = x^x (1 + \ln x).$$

Method 2. Taking logarithm on both sides, we have

$$\ln y = x \ln x$$

$$\frac{dy}{dx} = 1 + \ln x$$

$$\frac{dy}{dx} = y(1 + \ln x)$$

$$= x^{x}(1 + \ln x)$$

<ロ> (四)、(四)、(日)、(日)、

Example

Let u and v be functions of x. Show that

$$\frac{d}{dx}u^v = u^v v' \ln u + u^{v-1} v u'.$$

Proof.

We have

$$\frac{d}{dx}u^{v} = \frac{d}{dx}e^{v\ln u}$$

$$= e^{v\ln u}\left(\left(v'\ln u + v \cdot \frac{u'}{u}\right)\right)$$

$$= u^{v}v'\left(\ln u + \frac{vu'}{u}\right)$$

$$= u^{v}v'\ln u + u^{v-1}vu'$$

Limits Derivatives Differentiation Mean value Integration Application

Derivatives Mean value theorem Application of Differentiation

Second and higher derivatives

Definition (Second and higher derivatives)

Let y = f(x) be a function. The second derivative of f(x) is the function

$$rac{d^2y}{dx^2} = rac{d}{dx}\left(rac{dy}{dx}
ight).$$

The second derivative of y = f(x) is also denoted as f''(x) or y''. Let n be a non-negative integer. The *n*-th derivative of y = f(x) is defined inductively by

The n-th derivative is also denoted as $f^{(n)}(x)$ or $y^{(n)}.$ Note that $f^{(0)}(x)=f(x).$

Limits Differentiation Integration Derivatives Mean value theorem Application of Differentiation

Example

Find
$$\frac{d^2y}{dx^2}$$
 for the following functions.
1 $y = \ln(\sec x + \tan x)$
2 $x^2 - y^2 = 1$

Solution

1.
$$y' = \frac{1}{\sec x + \tan x} (\sec x \tan x + \sec^2 x)$$
$$= \sec x$$
$$y'' = \sec x \tan x$$
2.
$$2x - 2yy' = 0$$
$$y' = \frac{x}{y}$$
$$y'' = \frac{y - xy'}{y^2}$$
$$= \frac{y - x(\frac{x}{y})}{y^2}$$
$$= \frac{y^2 - x^2}{y^3}$$

<□ ト < 部 ト < 差 ト < 差 ト 差 の Q () 156 / 333

Theorem (Leinbiz's rule)

Let u and v be differentiable function of x. Then

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)}$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binormial coefficient.

Example

$$\begin{array}{rcl} (uv)^{(0)} &=& u^{(0)}v^{(0)} \\ (uv)^{(1)} &=& u^{(1)}v^{(0)} + u^{(0)}v^{(1)} \\ (uv)^{(2)} &=& u^{(2)}v^{(0)} + 2u^{(1)}v^{(1)} + u^{(0)}v^{(2)} \\ (uv)^{(3)} &=& u^{(3)}v^{(0)} + 3u^{(2)}v^{(1)} + 3u^{(1)}v^{(2)} + u^{(0)}v^{(3)} \\ (uv)^{(4)} &=& u^{(4)}v^{(0)} + 4u^{(3)}v^{(1)} + 6u^{(2)}v^{(2)} + 4u^{(1)}v^{(3)} + u^{(0)}v^{(4)} \end{array}$$

2

・ロト ・回ト ・ヨト ・ヨト

Proof

We prove the Leibniz's rule by induction on n. When n = 0, $(uv)^{(0)} = uv = u^{(0)}v^{(0)}$. Assume that for some nonnegative m,

$$(uv)^{(m)} = \sum_{k=0}^{m} \binom{m}{k} u^{(m-k)} v^{(k)}.$$

Then

$$(uv)^{(m+1)} = \frac{d}{dx}(uv)^{(m)} = \frac{d}{dx}\sum_{k=0}^{m} \binom{m}{k} u^{(m-k)}v^{(k)} = \sum_{k=0}^{m} \binom{m}{k} (u^{(m-k+1)}v^{(k)} + u^{(m-k)}v^{(k+1)})$$

Limits Differentiation Integration

Derivatives Mean value theorem Application of Differentiation

Proof.

$$= \sum_{k=0}^{m} \binom{m}{k} u^{(m-k+1)} v^{(k)} + \sum_{k=0}^{m} \binom{m}{k} u^{(m-k)} v^{(k+1)}$$

$$= \sum_{k=0}^{m} \binom{m}{k} u^{(m-k+1)} v^{(k)} + \sum_{k=1}^{m+1} \binom{m}{k-1} u^{(m-(k-1))} v^{(k)}$$

$$= \sum_{k=0}^{m} \binom{m}{k} u^{(m-k+1)} v^{(k)} + \sum_{k=1}^{m+1} \binom{m}{k-1} u^{(m-k+1)} v^{(k)}$$

$$= \sum_{k=0}^{m+1} \left(\binom{m}{k} + \binom{m}{k-1} \right) u^{(m-k+1)} v^{(k)}$$

$$= \sum_{k=0}^{m+1} \binom{m+1}{k} u^{(m+1-k)} v^{(k)}$$

Here we use the convention $\binom{m}{-1} = \binom{m}{m+1} = 0$ in the second last equality. This completes the induction step and the proof of the Leibniz's rule.

э

Example

Let $y = x^2 e^{3x}$. Find $y^{(n)}$ where n is a nonnegative integer.

Solution

Let $u = x^2$ and $v = e^{3x}$. Then $u^{(0)} = x^2$, $u^{(1)} = 2x$, $u^{(2)} = 2$ and $u^{(k)} = 0$ for $k \ge 3$. On the other hand, $v^{(k)} = 3^k e^{3x}$ for any $k \ge 0$. Therefore by Leibniz's rule, we have

$$y^{(n)} = \binom{n}{0} u^{(0)} v^{(n)} + \binom{n}{1} u^{(1)} v^{(n-1)} + \binom{n}{2} u^{(2)} v^{(n-2)}$$

= $x^2 (3^n e^{3x}) + n(2x)(3^{n-1} e^{3x}) + \frac{n(n-1)}{2!} (2)(3^{n-2} e^{3x})$
= $(3^n x^2 + 2 \cdot 3^{n-1} nx + 3^{n-2} (n^2 - n)) e^{3x}$
= $3^{n-2} (9x^2 + 6nx + n^2 - n) e^{3x}$

Limits Differentiation Integration Derivatives Mean value theorem Application of Differentiation

Mean value theorem

Definition (Increasing and decreasing function)

Let f(x) be a function. We say that f(x) is

- monotonic increasing (monotonic decreasing), or simply increasing (decreasing), if for any x, y with x < y, we have f(x) ≤ f(y) (f(x) ≥ f(y)).</p>
- **2** strictly increasing (strictly decreasing) if for any x, y with x < y, we have f(x) < f(y) (f(x) > f(y)).

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

If f(x) attains its maximum or minimum at $x = c \in (a, b)$, then f'(c) = 0. Answer:

- If f(x) attains its maximum or minimum at $x = c \in (a, b)$, then f'(c) = 0. Answer: T
- 2 If f'(c) = 0, then f(x) attains its maximum or minimum at $x = c \in (a, b)$. Answer:

- **1** If f(x) attains its maximum or minimum at $x = c \in (a, b)$, then f'(c) = 0. **Answer: T**
- 2 If f'(c) = 0, then f(x) attains its maximum or minimum at $x = c \in (a, b)$. Answer: F
- 3 If f'(x) = 0 for any $x \in (a, b)$, then f(x) is constant on (a, b). Answer:

- **1** If f(x) attains its maximum or minimum at $x = c \in (a, b)$, then f'(c) = 0. Answer: T
- 2 If f'(c) = 0, then f(x) attains its maximum or minimum at $x = c \in (a, b)$. Answer: F
- 3 If f'(x) = 0 for any $x \in (a, b)$, then f(x) is constant on (a, b). Answer: T
- If f(x) is strictly increasing on (a, b), then f'(x) > 0 for any $x \in (a, b)$. Answer:

- If f(x) attains its maximum or minimum at $x = c \in (a, b)$, then f'(c) = 0. Answer: T
- 2 If f'(c) = 0, then f(x) attains its maximum or minimum at $x = c \in (a, b)$. Answer: F
- 3 If f'(x) = 0 for any $x \in (a, b)$, then f(x) is constant on (a, b). Answer: T
- If f(x) is strictly increasing on (a, b), then f'(x) > 0 for any $x \in (a, b)$. Answer: F
- If f'(x) > 0 for any (a, b), then f(x) is strictly increasing on (a, b). Answer:

- If f(x) attains its maximum or minimum at $x = c \in (a, b)$, then f'(c) = 0. Answer: T
- 2 If f'(c) = 0, then f(x) attains its maximum or minimum at $x = c \in (a, b)$. Answer: F
- 3 If f'(x) = 0 for any $x \in (a, b)$, then f(x) is constant on (a, b). Answer: T
- If f(x) is strictly increasing on (a, b), then f'(x) > 0 for any $x \in (a, b)$. Answer: F
- If f'(x) > 0 for any (a, b), then f(x) is strictly increasing on (a, b). Answer: T
- If f(x) is monotonic increasing on (a, b), then $f'(x) \ge 0$ for any $x \in (a, b)$. **Answer**

- **1** If f(x) attains its maximum or minimum at $x = c \in (a, b)$, then f'(c) = 0. Answer: T
- 2 If f'(c) = 0, then f(x) attains its maximum or minimum at $x = c \in (a, b)$. Answer: F
- 3 If f'(x) = 0 for any $x \in (a, b)$, then f(x) is constant on (a, b). Answer: T
- If f(x) is strictly increasing on (a,b), then f'(x) > 0 for any $x \in (a,b)$. Answer: F
- **(3)** If f'(x) > 0 for any (a, b), then f(x) is strictly increasing on (a, b). **Answer: T**
- **()** If f(x) is monotonic increasing on (a, b), then $f'(x) \ge 0$ for any $x \in (a, b)$. Answer: **T**

Theorem

Let f be a function on (a, b) and $c \in (a, b)$ such that 1 f is differentiable at x = c, and 2 either $f(x) \le f(c)$ for any $x \in (a, b)$, or $f(x) \ge f(c)$ for any $x \in (a, b)$. Then f'(c) = 0.

Proof.

Theorem

Let f be a function on (a,b) and $c \in (a,b)$ such that

1 f is differentiable at x = c, and

2 either $f(x) \leq f(c)$ for any $x \in (a,b)$, or $f(x) \geq f(c)$ for any $x \in (a,b)$.

Then f'(c) = 0.

Proof.

Suppose $f(x) \leq f(c)$ for any $x \in (a, b)$. The proof for the other case is essentially the same. For any h < 0 with a < c + h < c, we have $f(c + h) - f(c) \leq 0$ and h is negative. Thus

Theorem

Let f be a function on (a,b) and $c \in (a,b)$ such that

2 either
$$f(x) \leq f(c)$$
 for any $x \in (a,b)$, or $f(x) \geq f(c)$ for any $x \in (a,b)$.
Then $f'(c) = 0$.

Proof.

Suppose $f(x) \leq f(c)$ for any $x \in (a, b)$. The proof for the other case is essentially the same. For any h < 0 with a < c + h < c, we have $f(c + h) - f(c) \leq 0$ and h is negative. Thus

$$f'(c) = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \ge 0$$

Theorem

Let f be a function on (a,b) and $c\in(a,b)$ such that

2 either $f(x) \leq f(c)$ for any $x \in (a,b)$, or $f(x) \geq f(c)$ for any $x \in (a,b)$. Then f'(c) = 0.

Proof.

Suppose $f(x) \leq f(c)$ for any $x \in (a,b)$. The proof for the other case is essentially the same. For any h < 0 with a < c + h < c, we have $f(c + h) - f(c) \leq 0$ and h is negative. Thus

$$f'(c) = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \ge 0$$

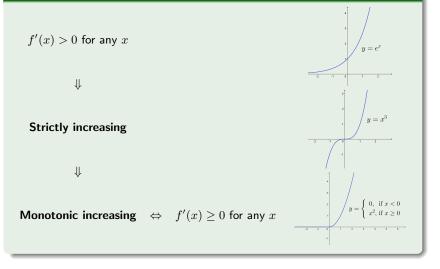
On the other hand, for any h>0 with c<+h< b, we have $f(c+h)-f(c)\leq 0$ and h is positive. Thus we have

$$f'(c) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$$

Therefore f'(c) = 0.

163 / 333

Mean value theorem Application of Differentiation



<□ ト < □ ト < □ ト < ≧ ト < ≧ ト = つ Q () 164 / 333

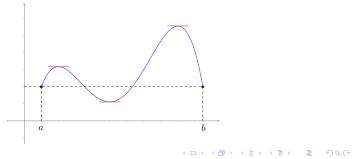
Theorem (Rolle's theorem)

Suppose f(x) is a function which satisfies the following conditions.

- **1** f(x) is continuous on [a, b].
- **2** f(x) is differentiable on (a, b).

3
$$f(a) = f(b)$$

Then there exists $\xi \in (a, b)$ such that $f'(\xi) = 0$.



Proof.

By extreme value theorem, there exist $a \leq \alpha, \beta \leq b$ such that

 $f(\alpha) \le f(x) \le f(\beta)$ for any $x \in [a, b]$.

Since f(a) = f(b), at least one of α, β can be chosen in (a, b) and we let it be ξ . Then we have $f'(\xi) = 0$ since f(x) attains its maximum or minimum at ξ .

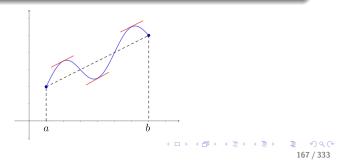
Theorem (Lagrange's mean value theorem)

Suppose f(x) is a function which satisfies the following conditions.

- **1** f(x) is continuous on [a, b].
- 2 f(x) is differentiable on (a, b).

Then there exists $\xi \in (a, b)$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$



Proof.

<ロト <回ト < 目ト < 目ト < 目ト < 目 や Q ()~ 168 / 333

Proof.

Let
$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$
. Since $g(a) = g(b) = f(a)$,
by Rolle's theorem, there exists $\xi \in (a, b)$ such that
 $g'(\xi) = 0$
 $f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0$
 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > 168 / 333

Theorem

Let f(x) be a function which is differentiable on (a,b). Then f(x) is monotonic increasing if and only if $f'(x) \ge 0$ for any $x \in (a,b)$.

Proof.

Let f(x) be a function which is differentiable on (a,b). Then f(x) is monotonic increasing if and only if $f'(x) \ge 0$ for any $x \in (a,b)$.

Proof. Suppose f(x) is monotonic increasing on (a, b). Then for any $x \in (a, b)$, we have $f(x + h) - f(x) \ge 0$ for any h > 0 and thus

$$f'(x) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} \ge 0.$$

Let f(x) be a function which is differentiable on (a,b). Then f(x) is monotonic increasing if and only if $f'(x) \ge 0$ for any $x \in (a,b)$.

Proof. Suppose f(x) is monotonic increasing on (a, b). Then for any $x \in (a, b)$, we have $f(x + h) - f(x) \ge 0$ for any h > 0 and thus

$$f'(x) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} \ge 0.$$

On the other hand, suppose $f'(x) \ge 0$ for any $x \in (a,b)$. Then for any $\alpha, \beta \in (a,b)$ with $\alpha < \beta$, by Lagrange's mean value theorem, there exists $\xi \in (\alpha, \beta)$ such that

$$f(\beta) - f(\alpha) = f'(\xi)(\beta - \alpha) \ge 0.$$

169 / 333

Therefore f(x) is monotonic increasing on (a, b).

Let f(x) be a function which is differentiable on (a,b). Then f(x) is monotonic increasing if and only if $f'(x) \ge 0$ for any $x \in (a,b)$.

Proof. Suppose f(x) is monotonic increasing on (a, b). Then for any $x \in (a, b)$, we have $f(x + h) - f(x) \ge 0$ for any h > 0 and thus

$$f'(x) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} \ge 0.$$

On the other hand, suppose $f'(x) \ge 0$ for any $x \in (a, b)$. Then for any $\alpha, \beta \in (a, b)$ with $\alpha < \beta$, by Lagrange's mean value theorem, there exists $\xi \in (\alpha, \beta)$ such that

$$f(\beta) - f(\alpha) = f'(\xi)(\beta - \alpha) \ge 0.$$

Therefore f(x) is monotonic increasing on (a, b).

Corollary

f(x) is constant on (a,b) if and only if f'(x) = 0 for any $x \in (a,b)$.

э

イロト イポト イヨト イヨト

Theorem

If f(x) is a differentiable function such that f'(x) > 0 for any $x \in (a, b)$, then f(x) is strictly increasing.

If f(x) is a differentiable function such that f'(x) > 0 for any $x \in (a, b)$, then f(x) is strictly increasing.

Proof.

Suppose f'(x) > 0 for any $x \in (a, b)$. Then for any $\alpha, \beta \in (a, b)$ with $\alpha < \beta$, by Lagrange's mean value theorem, there exists $\xi \in (\alpha, \beta)$ such that

$$f(\beta) - f(\alpha) = f'(\xi)(\beta - \alpha) > 0.$$

170/333

Therefore f(x) is strictly increasing on (a, b).

The converse of the above theorem is false.

If f(x) is a differentiable function such that f'(x) > 0 for any $x \in (a, b)$, then f(x) is strictly increasing.

Proof.

Suppose f'(x) > 0 for any $x \in (a, b)$. Then for any $\alpha, \beta \in (a, b)$ with $\alpha < \beta$, by Lagrange's mean value theorem, there exists $\xi \in (\alpha, \beta)$ such that

$$f(\beta) - f(\alpha) = f'(\xi)(\beta - \alpha) > 0.$$

Therefore f(x) is strictly increasing on (a, b).

The converse of the above theorem is false.

Example

 $f(x) = x^3$ is strictly increasing on \mathbb{R} but f'(0) = 0 is not positive.

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2}$. Now

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2}$. Now $f'(1) = 0$ and

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2}$. Now $f'(1) = 0$ and

+

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2}$. Now $f'(1) = 0$ and $\boxed{\begin{array}{c|c} 0 < x < 1 & x > 1 \\ f'(x) & - & + \end{array}}$

Therefore f(x) attains its minimum at x = 1 and we have $f(x) = \ln x - \frac{x-1}{x} \ge f(1) = 0$ for any x > 0. On the other hand, let $q(x) = x - 1 - \ln x$. Then

> ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 171/333

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

171/333

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2}$. Now $f'(1) = 0$ and $\boxed{\begin{array}{c|c} 0 < x < 1 & x > 1 \\ f'(x) & - & + \end{array}}$

Therefore f(x) attains its minimum at x = 1 and we have $f(x) = \ln x - \frac{x-1}{x} \ge f(1) = 0$ for any x > 0. On the other hand, let $g(x) = x - 1 - \ln x$. Then $g'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$. Now

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

171/333

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2}$. Now $f'(1) = 0$ and $\boxed{\begin{array}{c|c} 0 < x < 1 & x > 1 \\ f'(x) & - & + \end{array}}$

Therefore f(x) attains its minimum at x = 1 and we have $f(x) = \ln x - \frac{x-1}{x} \ge f(1) = 0$ for any x > 0. On the other hand, let $g(x) = x - 1 - \ln x$. Then $g'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$. Now g'(1) = 0 and

+

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

171/333

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

f'(x)

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2}$. Now $f'(1) = 0$ and $0 < x < 1 \mid x > 1$

Therefore f(x) attains its minimum at x = 1 and we have $f(x) = \ln x - \frac{x-1}{x} \ge f(1) = 0$ for any x > 0. On the other hand, let $g(x) = x - 1 - \ln x$. Then $g'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$. Now g'(1) = 0 and

	0 < x < 1	x > 1
f'(x)	—	+

+

Example

Prove that
$$1 - \frac{1}{x} \le \ln x \le x - 1$$
 for any $x > 0$.

Solution. Let
$$f(x) = \ln x - \left(1 - \frac{1}{x}\right)$$
. Then $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2}$. Now $f'(1) = 0$ and $0 < x < 1 | x > 1$

Therefore f(x) attains its minimum at x = 1 and we have $f(x) = \ln x - \frac{x-1}{x} \ge f(1) = 0$ for any x > 0. On the other hand, let $g(x) = x - 1 - \ln x$. Then $g'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$. Now g'(1) = 0 and

	0 < x < 1	x > 1
f'(x)	—	+

Therefore g(x) attains its minimum at x = 1 and we have $g(x) = x - 1 - \ln x \ge g(1) = 0$ for any x > 0.

f'(x)

Example

Let $0 < \alpha < 1$. Prove that

$$1 + \alpha x - \frac{\alpha(1-\alpha)x^2}{2} < (1+x)^{\alpha} < 1 + \alpha x$$
, for any $x > 0$.

Solution.

Example

Let $0 < \alpha < 1$. Prove that

$$1+lpha x-rac{lpha (1-lpha) x^2}{2} < (1+x)^lpha < 1+lpha x, \mbox{ for any } x>0$$

Solution. Let $f(x) = 1 + \alpha x - (1 + x)^{\alpha}$. Then f(0) = 0 and for any x > 0,

$$f'(x) = \alpha - \frac{\alpha}{(1+x)^{1-\alpha}} > \alpha - \alpha = 0.$$

Example

Let $0 < \alpha < 1$. Prove that

$$1+lpha x-rac{lpha (1-lpha) x^2}{2} < (1+x)^lpha < 1+lpha x, \mbox{ for any } x>0$$

Solution. Let $f(x) = 1 + \alpha x - (1 + x)^{\alpha}$. Then f(0) = 0 and for any x > 0,

$$f'(x) = \alpha - \frac{\alpha}{(1+x)^{1-\alpha}} > \alpha - \alpha = 0.$$

Therefore f(x) > 0 for any x > 0.

Example

Let $0 < \alpha < 1$. Prove that

$$1 + \alpha x - \frac{\alpha(1-\alpha)x^2}{2} < (1+x)^{\alpha} < 1 + \alpha x, \text{ for any } x > 0$$

Solution. Let $f(x) = 1 + \alpha x - (1 + x)^{\alpha}$. Then f(0) = 0 and for any x > 0,

$$f'(x) = \alpha - \frac{\alpha}{(1+x)^{1-\alpha}} > \alpha - \alpha = 0.$$

Therefore f(x) > 0 for any x > 0. On the other hand, let $g(x) = (1+x)^{\alpha} - \left(1 + \alpha x - \frac{\alpha(1-\alpha)x^2}{2}\right)$. Then g(0) = 0 and for any x > 0, $g'(x) = \frac{\alpha}{(1+x)^{1-\alpha}} - \alpha + \alpha(1-\alpha)x$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

172/333

Example

Let $0 < \alpha < 1$. Prove that

$$1 + \alpha x - \frac{\alpha(1-\alpha)x^2}{2} < (1+x)^{\alpha} < 1 + \alpha x, \text{ for any } x > 0$$

Solution. Let $f(x) = 1 + \alpha x - (1 + x)^{\alpha}$. Then f(0) = 0 and for any x > 0,

$$f'(x) = \alpha - \frac{\alpha}{(1+x)^{1-\alpha}} > \alpha - \alpha = 0.$$

Therefore f(x) > 0 for any x > 0. On the other hand, let $g(x) = (1+x)^{\alpha} - \left(1 + \alpha x - \frac{\alpha(1-\alpha)x^2}{2}\right)$. Then g(0) = 0 and for any x > 0,

$$g'(x) = \frac{\alpha}{(1+x)^{1-\alpha}} - \alpha + \alpha(1-\alpha)x$$

>
$$\frac{\alpha}{1+(1-\alpha)x} - \alpha(1-(1-\alpha)x)$$

=
$$\frac{\alpha(1-\alpha)^2 x^2}{1+(1-\alpha)x} > 0$$

Example

Let $0 < \alpha < 1$. Prove that

$$1 + \alpha x - \frac{\alpha(1-\alpha)x^2}{2} < (1+x)^{\alpha} < 1 + \alpha x, \text{ for any } x > 0$$

Solution. Let $f(x) = 1 + \alpha x - (1 + x)^{\alpha}$. Then f(0) = 0 and for any x > 0,

$$f'(x) = \alpha - \frac{\alpha}{(1+x)^{1-\alpha}} > \alpha - \alpha = 0.$$

Therefore f(x) > 0 for any x > 0. On the other hand, let $g(x) = (1+x)^{\alpha} - \left(1 + \alpha x - \frac{\alpha(1-\alpha)x^2}{2}\right)$. Then g(0) = 0 and for any x > 0,

$$g'(x) = \frac{\alpha}{(1+x)^{1-\alpha}} - \alpha + \alpha(1-\alpha)x$$

>
$$\frac{\alpha}{1+(1-\alpha)x} - \alpha(1-(1-\alpha)x)$$

=
$$\frac{\alpha(1-\alpha)^2x^2}{1+(1-\alpha)x} > 0$$

Therefore g(x) > 0 for any x > 0.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 172 / 333

Theorem (Cauchy's mean value theorem)

Suppose f(x) and g(x) are functions which satisfies the following conditions.

- **1** f(x), g(x) is continuous on [a, b].
- 2 f(x), g(x) is differentiable on (a, b).
- 3 $g'(x) \neq 0$ for any $x \in (a, b)$.

Then there exists $\xi \in (a, b)$ such that

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. Let

Theorem (Cauchy's mean value theorem)

Suppose f(x) and g(x) are functions which satisfies the following conditions.

- **1** f(x), g(x) is continuous on [a, b].
- 2 f(x), g(x) is differentiable on (a, b).
- 3 $g'(x) \neq 0$ for any $x \in (a, b)$.

Then there exists $\xi \in (a, b)$ such that

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. Let $h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$

Since h(a) = h(b) = f(a), by Rolle's theorem, there exists $\xi \in (a, b)$ such that $\begin{aligned} f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(\xi) &= 0 \\ f'(\xi) &= f(b) - f(a) \end{aligned}$

$$\frac{g'(\xi)}{g'(\xi)} = \frac{g'(\xi) - g(a)}{g(b) - g(a)}$$

Limits Differentiation Integration Derivatives Mean value theorem Application of Differentiation

L'Hopital's rule

Theorem (L'Hopital's rule)

Let $a \in [-\infty, +\infty].$ Suppose f and g are differentiable functions such that

1
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \text{ (or } \pm \infty).$$

2 $g'(x) \neq 0$ for any $x \neq a$ (on a neighborhood of a).
3 $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L.$
Then the limit of $\frac{f(x)}{g(x)}$ at $x = a$ exists and $\lim_{x \to a} \frac{f(x)}{g(x)} = L.$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Proof.

We give here the proof for $a \in (-\infty, +\infty)$. For any $x \neq a$, by applying Cauchy's mean value theorem to f(x), g(x) on [a, x] or [x, a], there exists ξ between a and x such that

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x)}{g(x)}$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Proof.

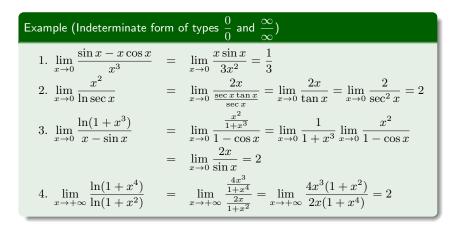
We give here the proof for $a \in (-\infty, +\infty)$. For any $x \neq a$, by applying Cauchy's mean value theorem to f(x), g(x) on [a, x] or [x, a], there exists ξ between a and x such that

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x)}{g(x)}$$

Here we redefine f(a) = g(a) = 0, if necessary, so that f and g are continuous at a. Note that $\xi \to a$ as $x \to a$. We have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(\xi)}{g'(\xi)} = L.$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation



・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ 日 ・ の へ ()
176 / 333

Limits Differentiation Derivatives Mean value theorem Application of Differentiation

Example (Indeterminate form of types $\infty - \infty$ and $0 \cdot \infty$)

$$5. \lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1) \ln x} = \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\frac{x - 1}{x} + \ln x}$$
$$= \lim_{x \to 1} \frac{x - 1}{x - 1 + x \ln x} = \lim_{x \to 1} \frac{1}{2 + \ln x} = \frac{1}{2}$$
$$6. \lim_{x \to 0} \cot 3x \tan^{-1} x = \lim_{x \to 0} \frac{\tan^{-1} x}{\tan 3x} = \lim_{x \to 0} \frac{1}{3} \frac{1 + x^2}{\sec^2 3x}$$
$$= \lim_{x \to 0^+} \frac{1}{3(1 + x^2) \sec^2 3x} = \frac{1}{3}$$
$$7. \lim_{x \to 0^+} x \ln \sin x = \lim_{x \to 0^+} \frac{\ln \sin x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{\cos x}{\sin x}}{-\frac{1}{x^2}}$$
$$= \lim_{x \to 0^+} \frac{-x^2 \cos x}{\sin x} = 0$$
$$8. \lim_{x \to +\infty} x \ln \left(\frac{x + 1}{x - 1}\right) = \lim_{x \to +\infty} \frac{\ln(x + 1) - \ln(x - 1)}{\frac{1}{x^2}}$$
$$= \lim_{x \to +\infty} \frac{\frac{1}{x + 1} - \frac{1}{x - 1}}{-\frac{1}{x^2}} = \lim_{x \to +\infty} \frac{2x^2}{(x + 1)(x - 1)} = 2$$

177 / 333

Example (Indeterminate form of types 0^{0} , 1^{∞} and ∞^{0})

Evaluate the following limits.

$$\lim_{x \to 0^{+}} x^{\sin x}$$

$$\lim_{x \to 0^{+}} (\cos x)^{\frac{1}{x^{2}}}$$

$$\lim_{x \to +\infty} (1+2x)^{\frac{1}{3 \ln x}}$$

Solution

$$\begin{array}{l} 1 & \ln\left(\lim_{x \to 0^{+}} x^{\sin x}\right) = \lim_{x \to 0^{+}} \ln(x^{\sin x}) = \lim_{x \to 0^{+}} \sin x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\csc x} \\ & = \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-\csc x \cot x} = \lim_{x \to 0^{+}} \frac{-\sin^{2} x}{x \cos x} = 0. \\ & Thus \lim_{x \to 0^{+}} x^{\sin x} = e^{0} = 1. \\ \begin{array}{l} 2 & \ln\left(\lim_{x \to 0} (\cos x)^{\frac{1}{x^{2}}}\right) = \lim_{x \to 0} \ln(\cos x)^{\frac{1}{x^{2}}} = \lim_{x \to 0} \frac{\ln \cos x}{x^{2}} = \lim_{x \to 0} \frac{-\tan x}{2x} \\ & = \lim_{x \to 0} \frac{-\sec^{2} x}{2} = -\frac{1}{2}. \\ & Thus \lim_{x \to 0} (\cos x)^{\frac{1}{x^{2}}} = e^{-\frac{1}{2}}. \\ \end{array} \\ \begin{array}{l} 3 & \ln\left(\lim_{x \to +\infty} (1+2x)^{\frac{3}{\ln x}}\right) = \lim_{x \to +\infty} \frac{3\ln(1+2x)}{\ln x} = \lim_{x \to +\infty} \frac{\frac{6}{1+2x}}{\frac{1}{x}} = 3. \\ & Thus \lim_{x \to +\infty} (1+2x)^{\frac{1}{3\ln x}} = e^{3}. \end{array} \end{array}$$

Example

The following shows some wrong use of L'Hopital rule.

1.

$$\lim_{x \to 0} \frac{\sec x - 1}{e^{2x} - 1} = \lim_{x \to 0} \frac{\sec x \tan x}{2e^{2x}}$$
$$= \lim_{x \to 0} \frac{\sec^2 x \tan x + \sec^3 x}{4e^{2x}}$$
$$= \frac{1}{4}$$

Example

The following shows some wrong use of L'Hopital rule.

1.

$$\lim_{x \to 0} \frac{\sec x - 1}{e^{2x} - 1} = \lim_{x \to 0} \frac{\sec x \tan x}{2e^{2x}}$$
$$= \lim_{x \to 0} \frac{\sec^2 x \tan x + \sec^3 x}{4e^{2x}}$$
$$= \frac{1}{4}$$

This is wrong because $\lim_{x\to 0} e^{2x} \neq 0, \pm \infty$. One cannot apply L'Hopital rule to $\lim_{x\to 0} \frac{\sec x \tan x}{2e^{2x}}$. The correct solution is

$$\lim_{x \to 0} \frac{\sec x - 1}{e^{2x} - 1} = \lim_{x \to 0} \frac{\sec x \tan x}{2e^{2x}} = 0.$$

Limits Derivat Differentiation Mean of Integration Applica

Derivatives Mean value theorem Application of Differentiation

Example

2.

$$\lim_{x \to +\infty} \frac{5x - 2\cos^2 x}{3x + \sin^2 x} = \lim_{x \to +\infty} \frac{5 + 2\cos x \sin x}{3 + \sin x \cos x}$$
$$= \lim_{x \to +\infty} \frac{2(\cos^2 x - \sin^2 x)}{\cos^2 x - \sin^2 x}$$
$$= 2$$

Example

2.

$$\lim_{x \to +\infty} \frac{5x - 2\cos^2 x}{3x + \sin^2 x} = \lim_{x \to +\infty} \frac{5 + 2\cos x \sin x}{3 + \sin x \cos x}$$
$$= \lim_{x \to +\infty} \frac{2(\cos^2 x - \sin^2 x)}{\cos^2 x - \sin^2 x}$$
$$= 2$$

This is wrong because $\lim_{x \to +\infty} (5 + 2\cos x \sin x)$ and $\lim_{x \to +\infty} (3 + \cos x \sin x)$ do not exist. One cannot apply L'Hopital rule to $\lim_{x \to +\infty} \frac{5 + 2\cos x \sin x}{3 + \sin x \cos x}$. The correct solution is $\lim_{x \to +\infty} \frac{5x - 2\cos^2 x}{3x + \sin^2 x} = \lim_{x \to +\infty} \frac{5 - \frac{2\cos^2 x}{x}}{3 + \frac{\sin^2 x}{x}} = \frac{5}{3}$.

<ロ> < (回) < (回) < (目) < (日) < (日) < (日) < (日) < (日) < (日) < (100 mm) </p>

Limits Differentiation Integration

Derivatives Mean value theorem Application of Differentiation

Taylor series

Definition (Taylor polynomial)

Let f(x) be a function such that the *n*-th derivative exists at x = a. The **Taylor polynomial** of degree n of f(x) at x = a is the polynomial

$$f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+\dots+\frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Limits Differentiation Integration

Derivatives Mean value theorem Application of Differentiation

Taylor series

Definition (Taylor polynomial)

Let f(x) be a function such that the *n*-th derivative exists at x = a. The **Taylor polynomial** of degree n of f(x) at x = a is the polynomial

$$f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+\dots+\frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Theorem

The Taylor polynomial $p_n(\boldsymbol{x})$ of degree n of $f(\boldsymbol{x})$ at $\boldsymbol{x}=\boldsymbol{a}$ is the unique polynomial such that

$$p_n^{(k)}(a) = f^{(k)}(a)$$
 for $k = 0, 1, 2, \dots, n.$

Example

Find the Taylor polynomial $p_3(x)$ of degree 3 of $f(x) = \sqrt{1+x} = (1+x)^{\frac{1}{2}}$ at x = 0. Solution.

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Find the Taylor polynomial $p_3(x)$ of degree 3 of $f(x) = \sqrt{1+x} = (1+x)^{\frac{1}{2}}$ at x = 0.

Solution. The derivatives $f^{(k)}(x)$ up to order 3 are

k	0	1	2	3
$f^{(k)}(x)$	$(1+x)^{\frac{1}{2}}$	$\frac{1}{2}(1+x)^{-\frac{1}{2}}$	$-\frac{1}{4}(1+x)^{-\frac{3}{2}}$	$\frac{3}{8}(1+x)^{-\frac{5}{2}}$
$f^{(k)}(0)$	1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{3}{8}$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Find the Taylor polynomial $p_3(x)$ of degree 3 of $f(x) = \sqrt{1+x} = (1+x)^{\frac{1}{2}}$ at x = 0.

Solution. The derivatives $f^{(k)}(x)$ up to order 3 are

k	0	1	2	3
$f^{(k)}(x)$	$(1+x)^{\frac{1}{2}}$	$\frac{1}{2}(1+x)^{-\frac{1}{2}}$	$-\frac{1}{4}(1+x)^{-\frac{3}{2}}$	$\frac{3}{8}(1+x)^{-\frac{5}{2}}$
$f^{(k)}(0)$	1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{3}{8}$

Therefore the Taylor polynomial of f(x) of degree 3 at x = 0 is

$$p_3(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + f^{(3)}(0)\frac{x^3}{3!}$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Find the Taylor polynomial $p_3(x)$ of degree 3 of $f(x) = \sqrt{1+x} = (1+x)^{\frac{1}{2}}$ at x = 0.

Solution. The derivatives $f^{(k)}(x)$ up to order 3 are

k	0	1	2	3
$f^{(k)}(x)$	$(1+x)^{\frac{1}{2}}$	$\frac{1}{2}(1+x)^{-\frac{1}{2}}$	$-\frac{1}{4}(1+x)^{-\frac{3}{2}}$	$\frac{3}{8}(1+x)^{-\frac{5}{2}}$
$f^{(k)}(0)$	1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{3}{8}$

Therefore the Taylor polynomial of f(x) of degree 3 at x = 0 is

$$p_{3}(x) = f(0) + f'(0)x + f''(0)\frac{x^{2}}{2!} + f^{(3)}(0)\frac{x^{3}}{3!}$$
$$= 1 + \left(\frac{1}{2}\right)x + \left(-\frac{1}{4}\right)\frac{x^{2}}{2!} + \left(\frac{3}{8}\right)\frac{x^{3}}{3!}$$
$$= 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{x^{3}}{16}$$

(ロ) (部) (注) (注) (注) (の)()

183 / 333

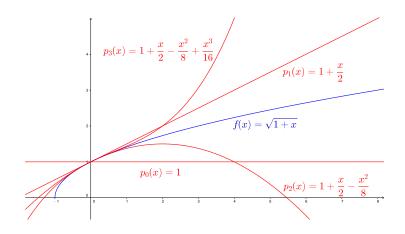


Figure: Taylor polynomials for $f(x) = \sqrt{1+x}$ at x = 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Limits Differentiation Integration Derivatives Mean value theorem Application of Differentiation

Example

Let $f(x) = \cos x$.

Limits Differentiation Integration Derivatives Mean value theorem Application of Differentiation

Example

Let $f(x) = \cos x$. The first few derivatives are

k	0	1	2	3	4
$\int f^{(k)}(x)$	$\cos x$	$-\sin x$	$-\cos x$	$-\sin x$	$\cos x$
$f^{(k)}(0)$	1	0	-1	0	1

Example

Let $f(x) = \cos x$. The first few derivatives are

k	0	1	2	3	4
$\int f^{(k)}(x)$	$\cos x$	$-\sin x$	$-\cos x$	$-\sin x$	$\cos x$
$f^{(k)}(0)$	1	0	-1	0	1

We see that

$$f^{(n)}(x) = \begin{cases} (-1)^k \cos x, & \text{if } n = 2k \\ (-1)^k \sin x, & \text{if } n = 2k-1 \end{cases} \text{ and } f^{(n)}(0) = \begin{cases} (-1)^k, & \text{if } n = 2k \\ 0, & \text{if } n = 2k-1 \end{cases}$$

Example

Let $f(x) = \cos x$. The first few derivatives are

k	0	1	2	3	4
$\int f^{(k)}(x)$	$\cos x$	$-\sin x$	$-\cos x$	$-\sin x$	$\cos x$
$f^{(k)}(0)$	1	0	-1	0	1

We see that

$$f^{(n)}(x) = \begin{cases} (-1)^k \cos x, & \text{if } n = 2k \\ (-1)^k \sin x, & \text{if } n = 2k-1 \end{cases} \text{ and } f^{(n)}(0) = \begin{cases} (-1)^k, & \text{if } n = 2k \\ 0, & \text{if } n = 2k-1 \end{cases}$$

Therefore the Taylor polynomial of $f(\boldsymbol{x})$ of degree n=2k at $\boldsymbol{x}=0$ is

$$p_{2k}(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f^{(2k)x^{2k}}(0)}{(2k)!}$$

185 / 333

Example

Let $f(x) = \cos x$. The first few derivatives are

k	0	1	2	3	4
$\int f^{(k)}(x)$	$\cos x$	$-\sin x$	$-\cos x$	$-\sin x$	$\cos x$
$f^{(k)}(0)$	1	0	-1	0	1

We see that

$$f^{(n)}(x) = \begin{cases} (-1)^k \cos x, & \text{if } n = 2k \\ (-1)^k \sin x, & \text{if } n = 2k-1 \end{cases} \text{ and } f^{(n)}(0) = \begin{cases} (-1)^k, & \text{if } n = 2k \\ 0, & \text{if } n = 2k-1 \end{cases}$$

Therefore the Taylor polynomial of $f(\boldsymbol{x})$ of degree n=2k at $\boldsymbol{x}=0$ is

$$p_{2k}(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f^{(2k)x^{2k}}(0)}{(2k)!}$$

= $1 + (0)x + \frac{(-1)x^2}{2!} + \frac{(0)x^3}{3!} + \frac{(1)x^4}{4!} + \dots + \frac{(-1)^k x^{2k}}{(2k)!}$
= $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^k x^{2k}}{(2k)!}$

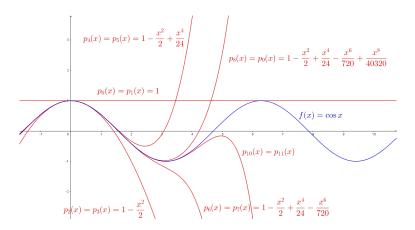


Figure: Taylor polynomials for $f(x) = \cos x$ at x = 0

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Find the Taylor polynomial of degree n of $f(x)=\frac{1}{x}$ at x=1. Solution.

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Find the Taylor polynomial of degree n of $f(x)=\frac{1}{x}$ at x=1. Solution. The derivatives $f^{(k)}(x)$ are

k	0	1	2	3	 n
$f^{(k)}(x)$	x^{-1}	$-x^{-2}$	$2x^{-3}$	$-6x^{-4}$	 $(-1)^n n! x^{-(n+1)}$
$f^{(k)}(1)$	1	-1	2	-6	 $(-1)^n n!$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example

Find the Taylor polynomial of degree n of $f(x) = \frac{1}{x}$ at x = 1. Solution. The derivatives $f^{(k)}(x)$ are

	k	0	1	2	3	•••	n
ſ	$f^{(k)}(x)$	x^{-1}	$-x^{-2}$	$2x^{-3}$	$-6x^{-4}$		$(-1)^n n! x^{-(n+1)}$
	$f^{(k)}(1)$	1	-1	2	-6	• • •	$(-1)^n n!$

Therefore the Taylor polynomial of f(x) of degree n at x = 1 is

$$p_n(x) = f(1) + f'(1)(x-1) + \frac{f''(1)(x-1)^2}{2!} + \dots + \frac{f^{(n)}(1)(x-1)^n}{(n)!}$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example

Find the Taylor polynomial of degree n of $f(x) = \frac{1}{x}$ at x = 1. Solution. The derivatives $f^{(k)}(x)$ are

Γ	k	0	1	2	3		n
Γ	$f^{(k)}(x)$	x^{-1}	$-x^{-2}$	$2x^{-3}$	$-6x^{-4}$		$(-1)^n n! x^{-(n+1)}$
	$f^{(k)}(1)$	1	-1	2	-6	•••	$(-1)^n n!$

Therefore the Taylor polynomial of f(x) of degree n at x = 1 is

$$p_n(x) = f(1) + f'(1)(x-1) + \frac{f''(1)(x-1)^2}{2!} + \dots + \frac{f^{(n)}(1)(x-1)^n}{(n)!}$$

= $1 - (x-1) + \frac{2(x-1)^2}{2!} + \frac{(-6)(x-1)^3}{3!} + \dots + \frac{(-1)^n n!(x-1)^n}{n!}$
= $1 - (x-1) + (x-1)^2 - (x-1)^3 + \dots + (-1)^n (x-1)^n$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

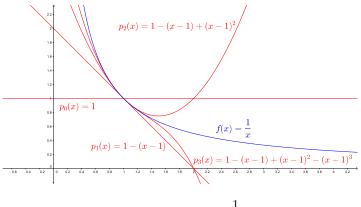


Figure: Taylor polynomials for $f(x) = \frac{1}{x}$ at x = 1

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example

Find the Taylor polynomial of $f(x) = (1+x)^{\alpha}$ at x = 0, where $\alpha \in \mathbb{R}$. Solution.

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example

Find the Taylor polynomial of $f(x) = (1+x)^{\alpha}$ at x = 0, where $\alpha \in \mathbb{R}$. Solution. The derivatives are

$$f(x) = (1+x)^{\alpha}$$

$$f'(x) = \alpha(1+x)^{\alpha-1}$$

$$f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$$

$$f'''(x) = \alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3}$$

$$\vdots$$

$$f^{(k)}(x) = \alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1)(1+x)^{\alpha-k}$$

Limits Derivatives Differentiation Mean value Integration Application

Derivatives Mean value theorem Application of Differentiation

Example

Thus we have $\begin{array}{rcl} f(0) &=& 1 \\ f'(0) &=& \alpha \\ f''(0) &=& \alpha(\alpha-1) \\ &\vdots \\ f^{(k)}(0) &=& \alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1) \\ \end{array}$ Therefore the Taylor polynomial of $f(x) = (1+x)^{\alpha}$ of degree n at x = 0 is Limits Derivativ Differentiation Mean va Integration Applicati

Mean value theorem Application of Differentiation

Example

Thus we have

$$f(0) = 1$$

$$f'(0) = \alpha$$

$$f''(0) = \alpha(\alpha - 1)$$

$$\vdots$$

$$f^{(k)}(0) = \alpha(\alpha - 1)(\alpha - 2)\cdots(\alpha - k + 1)$$
Therefore the Taylor polynomial of $f(x) = (1 + x)^{\alpha}$ of degree n at $x = 0$ is

$$p_n(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f^{(3)}(0)x^3}{3!} + \dots + \frac{f^{(n)}(0)x^n}{(n)!}$$

Limits Derivation Differentiation Mean via Integration Application

Derivatives Mean value theorem Application of Differentiation

Example

Thus we have $\begin{array}{rcl}
f(0) &=& 1 \\
f'(0) &=& \alpha \\
f''(0) &=& \alpha(\alpha-1) \\
&\vdots \\
f^{(k)}(0) &=& \alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1) \\
\end{array}$ Therefore the Taylor polynomial of $f(x) = (1+x)^{\alpha}$ of degree n at x = 0 is

$$p_n(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f^{(3)}(0)x^3}{3!} + \dots + \frac{f^{(n)}(0)x^n}{(n)!}$$

= $1 + \alpha x + \frac{\alpha(\alpha - 1)x^2}{2!} + \dots + \frac{\alpha(\alpha - 1)(\alpha - 2)\cdots(\alpha - n + 1)x^n}{n!}$
= $\binom{\alpha}{0} + \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 + \dots + \binom{\alpha}{n}x^n$

where

$$\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!}.$$

Example

The Taylor polynomials of degree n for f(x) at x = 0.

$$\begin{array}{ll} f(x) & \text{Taylor polynomial} \\ e^x & 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots+\frac{x^n}{n!} \\ \cos x & 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\dots+\frac{(-1)^kx^{2k}}{(2k)!}, \ n=2k \\ \sin x & x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\dots+\frac{(-1)^kx^{2k+1}}{(2k+1)!}, \ n=2k+1 \\ \ln(1+x) & x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\dots+\frac{(-1)^{n+1}x^n}{n} \\ \frac{1}{1-x} & 1+x+x^2+x^3+\dots+x^n \\ \sqrt{1+x} & 1+\frac{x}{2}-\frac{x^2}{8}+\frac{x^3}{16}-\frac{5x^4}{128}+\dots+\frac{(-1)^{n+1}(2n-3)!!x^n}{2^nn!} \\ (1+x)^\alpha & 1+\alpha x+\frac{\alpha(\alpha-1)x^2}{2!}+\frac{\alpha(\alpha-1)(\alpha-2)x^3}{3!}+\dots+\binom{\alpha}{n}x^n \end{array}$$

191 / 333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example

The Taylor polynomials of degree n for f(x) at x = a.

$$\begin{aligned} f(x) & \text{Taylor polynomial} \\ \cos x; \ a &= \pi & -1 + \frac{(x-\pi)^2}{2!} - \frac{(x-\pi)^4}{4!} + \dots + \frac{(-1)^{k+1}(x-\pi)^{2k}}{(2k)!} \\ e^x; \ a &= 2 & e^2 + e^2(x-2) + \frac{e^2(x-2)^2}{2!} + \dots + \frac{e^2(x-2)^n}{n!} \\ \frac{1}{x}; \ x &= 1 & 1 - (x-1) + (x-1)^2 - (x-1)^3 + \dots + (-1)^n (x-1)^n \\ \frac{1}{2+x}; \ a &= 0 & \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \dots + \frac{(-1)^n x^n}{2^{n+1}} \\ \frac{1}{3-2x}; \ x &= 1 & 1 + 2(x-1) + 4(x-1)^2 + 8(x-1)^3 + \dots + 2^n (x-1)^n \\ \sqrt{100-2x}; \ a &= 0 & 10 - \frac{x}{10} - \frac{x^2}{2000} - \frac{x^3}{200000} - \dots - \frac{(2n-3)!!x^n}{10^{2n-1}n!} \end{aligned}$$

Definition (Taylor series)

Let f(x) be an infinitely differentiable function. The **Taylor series** of f(x) at x = a is the infinite power series

$$T(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$

Example

The following table shows the Taylor series for f(x) at x = a.

f(x)	Taylor series
$e^x; a = 0$	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
$\cos x; a = 0$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$
$\sin x; \ a = \pi$	$-(x-\pi)+rac{(x-\pi)^3}{3!}-rac{(x-\pi)^5}{5!}+\cdots$
$\ln x; \ a = 1$	$(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \cdots$
$\sqrt{1+x}; \ a=0$	$1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \cdots$
$\frac{1}{\sqrt{1+x}}; \ a = 0$	$1 - \frac{x}{2} + \frac{3x^2}{8} - \frac{5x^3}{16} + \frac{35x^4}{128} - \frac{63x^5}{256} + \cdots$
$(1+x)^{\alpha}; \ a=0$	$1 + \alpha x + \frac{\alpha(\alpha - 1)x^2}{2!} + \frac{\alpha(\alpha - 1)(\alpha - 2)x^3}{3!} + \cdots$

▲ロ > ▲聞 > ▲ 臣 > ▲ 臣 > ― 臣 「 �

$$\begin{split} e^x; & \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \\ \cos x; & \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \\ \sin x; & \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \\ \ln(1+x); & \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \\ \frac{1}{1-x}; & \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \cdots \\ (1+x)^{\alpha}; & \sum_{k=0}^{\infty} \binom{\alpha}{k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)x^2}{2!} + \frac{\alpha(\alpha-1)(\alpha-2)x^3}{3!} + \cdots \\ \tan^{-1}x; & \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1} = x - \frac{x}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \\ \sin^{-1}x; & \sum_{k=0}^{\infty} \frac{(2k)! x^{2k+1}}{4^k (k!)^2 (2k+1)} = x + \left(\frac{1}{2}\right) \frac{x^3}{3} + \left(\frac{1\cdot3}{2\cdot4}\right) \frac{x^5}{5} + \left(\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\right) \frac{x^7}{7} + \cdots \end{split}$$

◆□ → < □ → < 亘 → < 亘 → < 亘 → < 亘 → ○ へ ○ 195 / 333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Theorem

Suppose T(x) is the Taylor series of f(x) at x = 0. Then for any positive integer k, the Taylor series for $f(x^k)$ at x = 0 is $T(x^k)$.

Example

$$f(x) \qquad \text{Taylor series at } x = 0$$

$$\frac{1}{1+x^2} \qquad 1 - x^2 + x^4 - x^6 + \cdots$$

$$\frac{1}{\sqrt{1-x^2}} \qquad 1 + \frac{x^2}{2} + \frac{3x^4}{8} + \frac{5x^6}{16} + \frac{35x^8}{128} + \cdots$$

$$\frac{\sin x^2}{x^2} \qquad 1 - \frac{x^4}{3!} + \frac{x^8}{5!} - \frac{x^{12}}{7!} + \cdots$$

・ロ ・ ・ 一 ・ ・ 三 ト ・ 三 ト ・ 三 ・ つ Q (?)
196 / 333

Theorem

Suppose the Taylor series for f(x) at x = 0 is

$$T(x) = \sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

Then the Taylor series for f'(x) is

$$T'(x) = \sum_{k=1}^{\infty} ka_k x^{k-1} = a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 + \cdots$$

<ロト <回ト <国ト < 国ト < 国ト < 国ト 197/333

Example

Find the Taylor series of the following functions.

1
$$\frac{1}{(1+x)^2}$$

2 $\tan^{-1} x$

Solution

Example

Find the Taylor series of the following functions.

1
$$\frac{1}{(1+x)^2}$$

2 $\tan^{-1} x$

Solution

1 Let
$$F(x) = -\frac{1}{1+x}$$
 so that $F'(x) = \frac{1}{(1+x)^2}$. The Taylor series for $F(x)$ at $x = 0$ is

Example

Find the Taylor series of the following functions.

1
$$\frac{1}{(1+x)^2}$$

2 $\tan^{-1} x$

Solution

• Let
$$F(x) = -\frac{1}{1+x}$$
 so that $F'(x) = \frac{1}{(1+x)^2}$. The Taylor series for $F(x)$ at $x = 0$ is

$$T(x) = -1 + x - x^2 + x^3 - x^4 + \cdots$$
Therefore the Taylor series for $F'(x) = \frac{1}{(1+x)^2}$ is

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ ()
198 / 333

Example

Find the Taylor series of the following functions.

1
$$\frac{1}{(1+x)^2}$$

2 $\tan^{-1} x$

Solution

• Let
$$F(x) = -\frac{1}{1+x}$$
 so that $F'(x) = \frac{1}{(1+x)^2}$. The Taylor series for
 $F(x)$ at $x = 0$ is
 $T(x) = -1 + x - x^2 + x^3 - x^4 + \cdots$.
Therefore the Taylor series for $F'(x) = \frac{1}{(1+x)^2}$ is
 $T'(x) = 1 - 2x + 3x^2 - 4x^3 + \cdots$.

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

2. Suppose the Taylor series for $f(x) = \tan^{-1} x$ at x = 0 is

$$T(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \cdots$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

2. Suppose the Taylor series for $f(x) = \tan^{-1} x$ at x = 0 is

$$T(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \cdots$$

Now comparing T'(x) with the Taylor series for $f'(x)=\frac{1}{1+x^2}$ which takes the form

$$1 - x^2 + x^4 - x^6 + \cdots$$
,

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

2. Suppose the Taylor series for $f(x) = \tan^{-1} x$ at x = 0 is

$$T(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \cdots$$

Now comparing T'(x) with the Taylor series for $f'(x)=\frac{1}{1+x^2}$ which takes the form

$$1 - x^2 + x^4 - x^6 + \cdots$$

we obtain the values of a_1, a_2, a_3, \ldots and get

$$T(x) = a_0 + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Since $a_0 = f(0) = 0$, we have

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

2. Suppose the Taylor series for $f(x) = \tan^{-1} x$ at x = 0 is

$$T(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \cdots$$

Now comparing T'(x) with the Taylor series for $f'(x)=\frac{1}{1+x^2}$ which takes the form

$$1 - x^2 + x^4 - x^6 + \cdots$$

we obtain the values of a_1, a_2, a_3, \ldots and get

$$T(x) = a_0 + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Since $a_0 = f(0) = 0$, we have

$$T(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Theorem

Suppose the Taylor series for f(x) and g(x) at x = 0 are

$$S(x) = \sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots,$$

$$T(x) = \sum_{k=0}^{\infty} b_k x^k = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \cdots,$$

respectively. Then the Taylor series for f(x)g(x) at x = 0 is

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n$$

= $a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + \cdots$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Proof.

The coefficient of x^n of the Taylor series of f(x)g(x) at x = 0 is

$$\frac{(fg)^{(n)}(0)}{n!} = \sum_{k=0}^{n} {n \choose k} \frac{f^{(k)}(0)g^{(n-k)}(0)}{n!} \quad \text{(Leibniz's formula)}$$
$$= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \cdot \frac{f^{(k)}(0)g^{(n-k)}(0)}{n!}$$
$$= \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \cdot \frac{g^{(n-k)}(0)}{(n-k)!}$$
$$= \sum_{k=0}^{n} a_k b_{n-k}$$

Example

1 The Taylor series for
$$e^{4x} \ln(1+x)$$
 is

$$\left(1+4x+\frac{16x^2}{2!}+\frac{64x^3}{3!}+\cdots\right)\left(x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots\right)$$
$$= x+\left(-\frac{1}{2}+4\right)x^2+\left(\frac{1}{3}+4\cdot\left(-\frac{1}{2}\right)+8\right)x^3+\cdots$$
$$= x+\frac{7x^2}{2}+\frac{19x^3}{3}+\cdots$$

2 The Taylor series for
$$\frac{\tan^{-1} x}{\sqrt{1-x^2}}$$
 is

$$\left(x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right) \left(1 + \frac{x^2}{2} + \frac{3x^4}{8} + \cdots\right)$$
$$= x + \left(\frac{1}{2} - \frac{1}{3}\right) x^3 + \left(\frac{3}{4} - \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{5}\right) x^5 + \cdots$$
$$= x + \frac{x^3}{6} + \frac{49x^5}{120} + \cdots$$

イロン イヨン イヨン イヨン

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Theorem

Suppose f(x) and g(x) are infinitely differentiable functions and the Taylor series of f(x) and g(x) at x = 0 are

$$a_k x^k + a_{k+1} x^{k+1} + a_{k+2} x^{k+2} + \cdots$$

and

$$b_k x^k + b_{k+1} x^{k+1} + b_{k+2} x^{k+2} + \cdots$$

where $b_k \neq 0$. Then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{a_k + a_{k+1}x + a_{k+2}x^2 + \cdots}{b_k + b_{k+1}x + b_{k+2}x^2 + \cdots} = \frac{a_k}{b_k}$$

Proof.

The assumptions on f(x) and g(x) imply that

$$f(0) = f'(0) = f''(0) = \dots = f^{(k-1)}(0) = 0; \ f^{(k)}(0) = a_k$$

$$g(0) = g'(0) = g''(0) = \dots = g^{(k-1)}(0) = 0; \ g^{(k)}(0) = b_k$$

Therefore, by L'Hopital's rule, we have

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{f''(x)}{g''(x)} = \dots = \lim_{x \to 0} \frac{f^{(k)}(x)}{g^{(k)}(x)} = \frac{a_k}{b_k}$$

Limits Differentiation

Derivatives Mean value theorem Application of Differentiation

Example

1.
$$\lim_{x \to 0} \frac{\ln(1+x) - x\sqrt{1-x}}{x - \sin x}$$

$$= \lim_{x \to 0} \frac{(x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots) - x(1 - \frac{x}{2} - \frac{x^2}{8} + \cdots)}{x - (x - \frac{x^3}{6} + \cdots)}$$

$$= \lim_{x \to 0} \frac{\frac{11x^3}{24} + \cdots}{\frac{x^3}{6} + \cdots}$$

$$= \frac{11}{4}$$

2.
$$\lim_{x \to 0} \left(\frac{e^x}{x} - \frac{1}{\tan x}\right) = \lim_{x \to 0} \frac{e^x \sin x - x \cos x}{x \sin x}$$

$$= \lim_{x \to 0} \frac{(1 + x + \frac{x^2}{2} + \cdots)(x - \frac{x^3}{6} + \cdots) - x(1 - \frac{x^2}{2} + \cdots)}{x(x - \frac{x^3}{6} + \cdots)}$$

$$= \lim_{x \to 0} \frac{(x + x^2 + \frac{x^3}{3} + \cdots) - (x - \frac{x^3}{2} + \cdots)}{x^2 - \frac{x^4}{6} + \cdots}$$

$$= \lim_{x \to 0} \frac{x^2 + \frac{5x^3}{6} + \cdots}{x^2 - \frac{x^4}{6} + \cdots}$$

$$= 1$$

ク へ (や 205 / 333

Curve sketching

To sketch the graph of y = f(x), one first finds

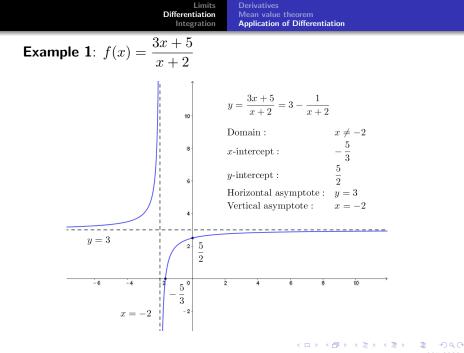
- Domain: The values of x where f(x) is defined.
- *x*-intercepts: The values of x such that f(x) = 0.
- y-intercept: f(0)
- Horizontal asymptotes:

If $\lim_{x \to -\infty/+\infty} f(x) = b$, then y = b is a horizontal asymptote.

Vertical asymptotes:

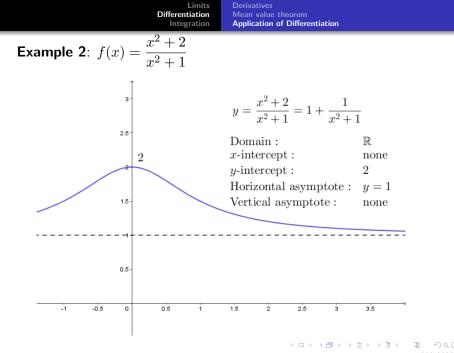
If $\lim_{x\to a^-/a^+}f(x)=-\infty/+\infty,$ then x=a is a vertical asymptote.

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation
Example 1 : $f(x) = \frac{3x+5}{x+2}$	



207 / 333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation
Example 2 : $f(x) = \frac{x^2 + 2}{x^2 + 1}$	

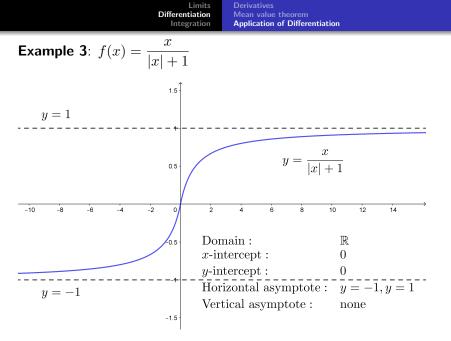


208 / 333

Limits Differentiation Derivatives Mean value theorem Application of Differentiation

Example 3:
$$f(x) = \frac{x}{|x|+1}$$

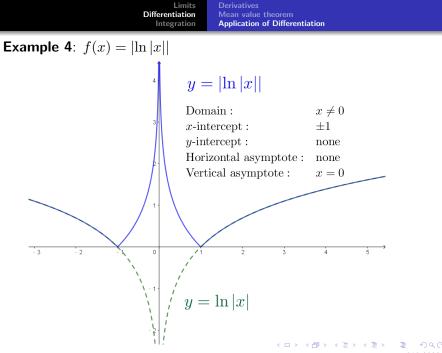
< □ > < □ > < □ > < 亘 > < 亘 > < 亘 > ○ Q (~ 209 / 333



<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q () 209 / 333

Derivatives Mean value theorem Application of Differentiation

Example 4: $f(x) = |\ln |x||$



210 / 333

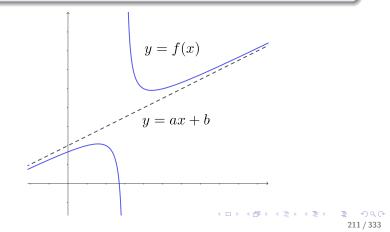
Derivatives Mean value theorem Application of Differentiation

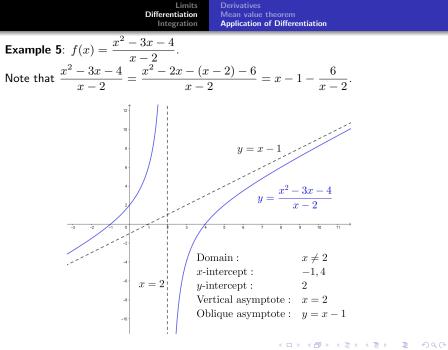
Definition (Oblique asymptote)

lf

$$\lim_{x \to -\infty/+\infty} (f(x) - (ax+b)) = 0,$$

we say that y = ax + b is an oblique asymptote of y = f(x).



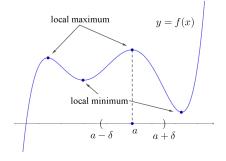


212 / 333

Definition

Let f(x) be a continuous function. We say that f(x) has a

- **O local maximum** at x = a if there exists $\delta > 0$ such that $f(x) \le f(a)$ for any $x \in (a \delta, a + \delta)$.
- **2** local minimum at x = a if there exists $\delta > 0$ such that $f(x) \ge f(a)$ for any $x \in (a \delta, a + \delta)$.

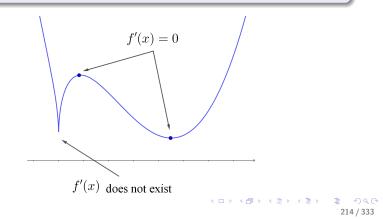


・ロ ・ ・ 一部 ト ・ 注目 ト ・ 注目 ・ つ Q (の)
213 / 333

Theorem

Let f(x) be a continuous function. Suppose f(x) has local maximum or local minimum at x = a. Then either

- **1** f'(a) = 0, or
- 2 f'(x) does not exist at x = a.



Theorem (First derivative test)

Let f(x) be a continuous function and f'(a) = 0 or f'(a) does not exist. Suppose there is $\delta > 0$ such that $\int_{f'(x) > 0}^{f'(x) > 0} \int_{f'(x) < 0}^{f'(x) < 0} dx$

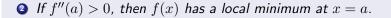
Then f(x) has a local maximum at x = a.

Then f(x) has a local minimum at x = a.

x = a

Theorem (Second derivative test)

Let f(x) be a differentiable function and f'(a) = 0. If f''(a) < 0, then f(x) has a local maximum at x = a.



f''(a) > 0

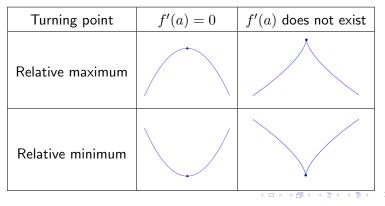
f''(a) < 0

Derivatives Mean value theorem Application of Differentiation

Definition (Turning point)

We say that f(x) has a **turning point** at x = a if f'(x) changes sign at x = a.

If f(x) has a turning point at x = a, then either f'(a) = 0 or f'(x) does not exist.



217 / 333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 6:
$$f(x) = \frac{x-3}{x^2+4x-5}$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 6:
$$f(x) = \frac{x-3}{x^2+4x-5}$$

 $f(x) = \frac{x-3}{(x-1)(x+5)}, x \neq -5, 1$

Example 6:
$$f(x) = \frac{x-3}{x^2+4x-5}$$

 $f(x) = \frac{x-3}{(x-1)(x+5)}, x \neq -5, 1$
 $f'(x) = \frac{(x^2+4x-5)(1)-(x-3)(2x+4)}{(x-1)^2(x+5)^2} = -\frac{(x+1)(x-7)}{(x-1)^2(x+5)^2}$

Example 6:
$$f(x) = \frac{x-3}{x^2+4x-5}$$

 $f(x) = \frac{x-3}{(x-1)(x+5)}, x \neq -5, 1$
 $f'(x) = \frac{(x^2+4x-5)(1)-(x-3)(2x+4)}{(x-1)^2(x+5)^2} = -\frac{(x+1)(x-7)}{(x-1)^2(x+5)^2}$
Thus $f'(x) = 0$ when $x = -1, 7$.

Example 6:
$$f(x) = \frac{x-3}{x^2+4x-5}$$

 $f(x) = \frac{x-3}{(x-1)(x+5)}, x \neq -5, 1$
 $f'(x) = \frac{(x^2+4x-5)(1)-(x-3)(2x+4)}{(x-1)^2(x+5)^2} = -\frac{(x+1)(x-7)}{(x-1)^2(x+5)^2}$
Thus $f'(x) = 0$ when $x = -1, 7$.

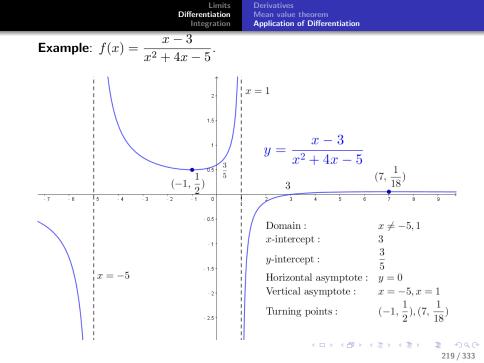
	x < -5	-5 < x < -1	-1 < x < 1	1 < x < 7	x > 7
f'(x)	-	-	+	+	—

Example 6:
$$f(x) = \frac{x-3}{x^2+4x-5}$$

 $f(x) = \frac{x-3}{(x-1)(x+5)}, x \neq -5, 1$
 $f'(x) = \frac{(x^2+4x-5)(1)-(x-3)(2x+4)}{(x-1)^2(x+5)^2} = -\frac{(x+1)(x-7)}{(x-1)^2(x+5)^2}$
Thus $f'(x) = 0$ when $x = -1, 7$.

	x < -5	-5 < x < -1	-1 < x < 1	1 < x < 7	x > 7
f'(x)	-	—	+	+	—

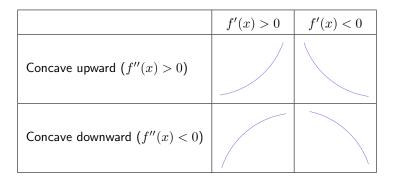
 $(-1,\frac{1}{2})$ is a minimum point and $(7,\frac{1}{18})$ is a maximum point.



Definition (Concavity)

We say that f(x) is

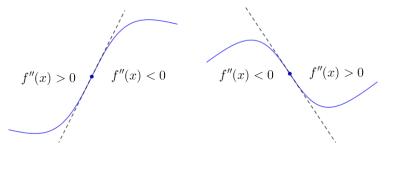
- **2** Concave downward on (a, b) if f''(x) < 0 on (a, b).



Definition (Inflection point)

We say that f(x) has an **inflection point** at x = a if f''(x) changes sign at x = a.

If f(x) has an inflection point at x = a, then ether f''(a) = 0 or f''(a) does not exist.



 Limits Differentiation Derivatives Mean value theorem Application of Differentiation

Example 7: f(x) = |x+1|(3-x)|

Limits Differentiation Derivatives Mean value theorem Application of Differentiation

Example 7:
$$f(x) = |x + 1|(3 - x)$$

 $f(x) = |x + 1|(3 - x) = \begin{cases} (x + 1)(x - 3) & \text{if } x < -1 \\ -(x + 1)(x - 3) & \text{if } x \ge -1 \end{cases}$
 $y = |x + 1|(3 - x)$
Domain : \mathbb{R}
x-intercept : -1, 3
y-intercept : 3
Asymptotes : none
Turning point : (-1,0), (1,4)
Inflecction point : (-1,0)
 $y = (x + 1)(3 - x)$

222 / 333

Derivatives Mean value theorem Application of Differentiation

Example 8:
$$f(x) = x + \frac{1}{|x|}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の < ⊙ 223 / 333

Example 8:
$$f(x) = x + \frac{1}{|x|}$$

Since $\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{1}{|x|} = 0$, $y = f(x)$ has an oblique asymptote $y = x$.

Example 8:
$$f(x) = x + \frac{1}{|x|}$$

Since $\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{1}{|x|} = 0$, $y = f(x)$ has an oblique asymptote $y = x$.
When $x < 0$, $f(x) = x - \frac{1}{x}$.

Limits Differentiation

Example 8:
$$f(x) = x + \frac{1}{|x|}$$

Since $\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{1}{|x|} = 0$, $y = f(x)$ has an oblique asymptote $y = x$.
When $x < 0$, $f(x) = x - \frac{1}{x}$.
 $f'(x) = 1 + \frac{1}{x^2}$

Limits Differentiation

Example 8:
$$f(x) = x + \frac{1}{|x|}$$

Since $\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{1}{|x|} = 0$,
 $y = f(x)$ has an oblique asymptote $y = x$.
When $x < 0$, $f(x) = x - \frac{1}{x}$.
 $f'(x) = 1 + \frac{1}{x^2}$
 $f''(x) = -\frac{2}{x^3}$

Derivatives Mean value theorem Application of Differentiation

Example 8: $f(x) = x + \frac{1}{|x|}$ Since $\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{1}{|x|} = 0$, y = f(x) has an oblique asymptote y = x. When x < 0, $f(x) = x - \frac{1}{x}$. $f'(x) = 1 + \frac{1}{x^2}$ $f''(x) = -\frac{2}{x^3}$ When x > 0, $f(x) = x + \frac{1}{x}$.

Derivatives Mean value theorem Application of Differentiation

Example 8: $f(x) = x + \frac{1}{|x|}$ Since $\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{1}{|x|} = 0$, y = f(x) has an oblique asymptote y = x. When x < 0, $f(x) = x - \frac{1}{-}$. $f'(x) = 1 + \frac{1}{x^2}$ $f''(x) = -\frac{2}{x^3}$ When x > 0, $f(x) = x + \frac{1}{x}$. $f'(x) = 1 - \frac{1}{x^2}$

Derivatives Mean value theorem Application of Differentiation

Example 8: $f(x) = x + \frac{1}{|x|}$ Since $\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{1}{|x|} = 0$, y = f(x) has an oblique asymptote y = x. When x < 0, $f(x) = x - \frac{1}{x}$. $f'(x) = 1 + \frac{1}{x^2}$ $f''(x) = -\frac{2}{x^3}$ When x > 0, $f(x) = x + \frac{1}{x}$. $f'(x) = 1 - \frac{1}{x^2}$ $f''(x) = \frac{2}{x^3}$

Derivatives Mean value theorem Application of Differentiation

x > 1

+

+

Example 8: $f(x) = x + \frac{1}{|x|}$ Since $\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{1}{|x|} = 0$, y = f(x) has an oblique asymptote y = x. When x < 0, $f(x) = x - \frac{1}{x}$. $f'(x) = 1 + \frac{1}{x^2}$ $f''(x) = -\frac{2}{x^3}$ When x > 0, $f(x) = x + \frac{1}{x}$. $f'(x) = 1 - \frac{1}{x^2}$ $f''(x) = \frac{2}{x^3}$ 0 < x < 1x < 0+++

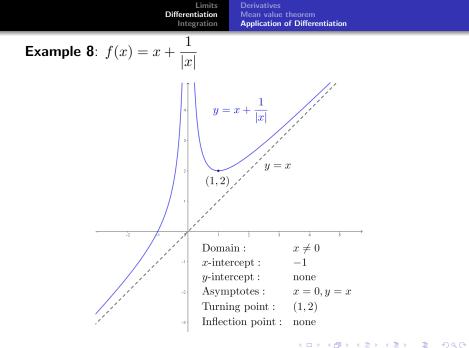
f(x) has a minimum point at x = 1.

f(x) has no inflection point.

Limits Differentiation Derivatives Mean value theorem Application of Differentiation

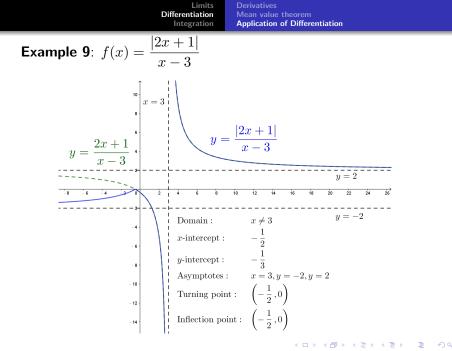
Example 8:
$$f(x) = x + \frac{1}{|x|}$$

(ロ)、(日)、(三)、(三)、(三)、(三)、(224/333)



224 / 333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation
Example 9 : $f(x) = \frac{ 2x+1 }{x-3}$	



225 / 333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 10: $f(x) = 2 - (x - 8)^{\frac{1}{3}}$

Limits	Derivatives	
Differentiation	Mean value theorem	
Integration	Application of Differentiation	

Example 10:
$$f(x) = 2 - (x - 8)^{\frac{1}{3}}$$

 $f'(x) = -\frac{1}{3(x - 8)^{\frac{2}{3}}}$

Limits	Derivatives	
Differentiation	Mean value theorem	
Integration	Application of Differentiation	

Example 10:
$$f(x) = 2 - (x - 8)^{\frac{1}{3}}$$

 $f'(x) = -\frac{1}{3(x - 8)^{\frac{2}{3}}}$
 $f''(x) = \frac{2}{9(x - 8)^{\frac{5}{3}}}$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 10:
$$f(x) = 2 - (x - 8)^{\frac{1}{3}}$$

 $f'(x) = -\frac{1}{3(x - 8)^{\frac{2}{3}}}$
 $f''(x) = \frac{2}{9(x - 8)^{\frac{5}{3}}}$
 $f'(x), f''(x)$ do not exist at $x = 8$.

	x < 8	x > 8
f'(x)	—	—
f''(x)	_	+

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 10:
$$f(x) = 2 - (x - 8)^{\frac{1}{3}}$$

 $f'(x) = -\frac{1}{3(x - 8)^{\frac{2}{3}}}$
 $f''(x) = \frac{2}{9(x - 8)^{\frac{5}{3}}}$
 $f'(x)$, $f''(x)$ do not exist at $x = 8$.

	x < 8	x > 8
f'(x)	—	—
f''(x)	_	+

f(x) has no turning point.

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 10:
$$f(x) = 2 - (x - 8)^{\frac{1}{3}}$$

 $f'(x) = -\frac{1}{3(x - 8)^{\frac{2}{3}}}$
 $f''(x) = \frac{2}{9(x - 8)^{\frac{5}{3}}}$
 $f'(x), f''(x)$ do not exist at $x = 8$.

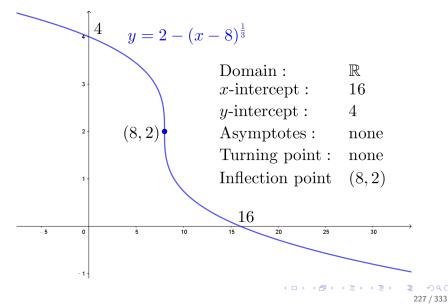
	x < 8	x > 8
f'(x)	—	-
f''(x)	_	+

・ロン ・四 と ・ ヨ と ・ ヨ と …

∃ √ Q C 226 / 333

f(x) has no turning point. f(x) has an inflection point at x = 8.

Example 10:
$$f(x) = 2 - (x - 8)^{\frac{1}{3}}$$



Example 11:
$$f(x) = |1 - \sqrt{|x|}|$$

Derivatives Mean value theorem Application of Differentiation

Example 11:
$$f(x) = \left|1 - \sqrt{|x|}\right|$$

$$y = \begin{vmatrix} 1 - \sqrt{|x|} \end{vmatrix}^{2}$$
Domain : \mathbb{R}
x-intercept : $-1, 0, 1$
y-intercept : 0
Asymptotes : none
Turning point : $(-1, 0), (0, 1), (1, 0)$
Inflection point : $(-1, 0), (1, 0)$

$$y = \sqrt{|x|} \sqrt{y} = \sqrt{|x|} - 1$$

Limits Differentiation Derivatives Mean value theorem Application of Differentiation

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Limits Differentiation

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$

Derivatives Mean value theorem Application of Differentiation

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$

< □ > < □ > < □ > < 亘 > < 亘 > < 亘 > ○ Q (~ 229 / 333

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$
 $f(x)$ has a horizontal asymptote $y = 1$.

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$
 $f(x)$ has a horizontal asymptote $y = 1$.
 $f'(x) = \frac{x^2 - 2x(x - 2)}{x^4} = \frac{x - 2(x - 2)}{x^3} = -\frac{x - 4}{x^3}$

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$
 $f(x)$ has a horizontal asymptote $y = 1$.
 $f'(x) = \frac{x^2 - 2x(x - 2)}{x^4} = \frac{x - 2(x - 2)}{x^3} = -\frac{x - 4}{x^3}$

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$
 $f(x)$ has a horizontal asymptote $y = 1$.
 $f'(x) = \frac{x^2 - 2x(x - 2)}{x^4} = \frac{x - 2(x - 2)}{x^3} = -\frac{x - 4}{x^3}$
 $f'(x) = 0$ when $x = 4$
 $f''(x) = -\frac{x^3 - 3x^2(x - 4)}{x^6} = -\frac{x - 3(x - 4)}{x^6} = \frac{2(x - 6)}{x^4}$

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$
 $f(x)$ has a horizontal asymptote $y = 1$.
 $f'(x) = \frac{x^2 - 2x(x - 2)}{x^4} = \frac{x - 2(x - 2)}{x^3} = -\frac{x - 4}{x^3}$
 $f'(x) = 0$ when $x = 4$
 $f''(x) = -\frac{x^3 - 3x^2(x - 4)}{x^6} = -\frac{x - 3(x - 4)}{x^6} = \frac{2(x - 6)}{x^4}$
 $f''(x) = 0$ when $x = 6$.

Derivatives Mean value theorem Application of Differentiation

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$
 $f(x)$ has a horizontal asymptote $y = 1$.
 $f'(x) = \frac{x^2 - 2x(x - 2)}{x^4} = \frac{x - 2(x - 2)}{x^3} = -\frac{x - 4}{x^3}$
 $f'(x) = 0$ when $x = 4$
 $f''(x) = -\frac{x^3 - 3x^2(x - 4)}{x^6} = -\frac{x - 3(x - 4)}{x^6} = \frac{2(x - 6)}{x^4}$
 $f''(x) = 0$ when $x = 6$.

	$(-\infty,0)$	(0,4)	(4, 6)	$(6, +\infty)$
f'(x)	-	+	—	-
f''(x)	-	—	—	+

Derivatives Mean value theorem Application of Differentiation

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$
 $f(x)$ has a horizontal asymptote $y = 1$.
 $f'(x) = \frac{x^2 - 2x(x - 2)}{x^4} = \frac{x - 2(x - 2)}{x^3} = -\frac{x - 4}{x^3}$
 $f'(x) = 0$ when $x = 4$
 $f''(x) = -\frac{x^3 - 3x^2(x - 4)}{x^6} = -\frac{x - 3(x - 4)}{x^6} = \frac{2(x - 6)}{x^4}$
 $f''(x) = 0$ when $x = 6$.

	$(-\infty,0)$	(0, 4)	(4, 6)	$(6, +\infty)$
f'(x)	_	+	_	—
f''(x)	_	_	_	+

 $(4,\frac{9}{8})$ is maximum point.

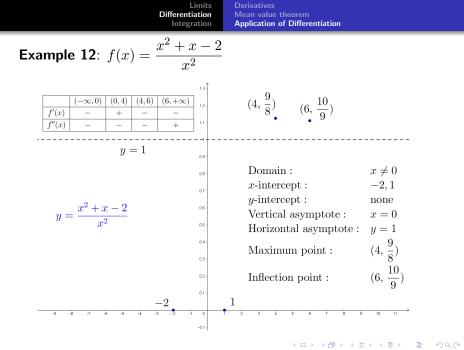
Derivatives Mean value theorem Application of Differentiation

Example 12:
$$f(x) = \frac{x^2 + x - 2}{x^2}$$

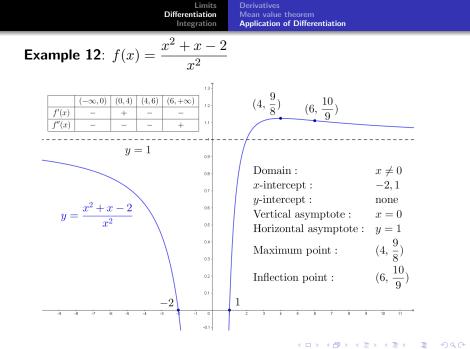
Domain: $x \neq 0$
 $f(x) = \frac{x^2 + x - 2}{x^2} = 1 + \frac{x - 2}{x^2}$
 $f(x)$ has a horizontal asymptote $y = 1$.
 $f'(x) = \frac{x^2 - 2x(x - 2)}{x^4} = \frac{x - 2(x - 2)}{x^3} = -\frac{x - 4}{x^3}$
 $f'(x) = 0$ when $x = 4$
 $f''(x) = -\frac{x^3 - 3x^2(x - 4)}{x^6} = -\frac{x - 3(x - 4)}{x^6} = \frac{2(x - 6)}{x^4}$
 $f''(x) = 0$ when $x = 6$.

		$(-\infty,0)$	(0, 4)	(4, 6)	$(6, +\infty)$
ſ	f'(x)	—	+	_	-
	f''(x)	—	_		+

 $(4,\frac{9}{8})$ is maximum point. $(6,\frac{10}{9})$ is an inflection point.



230 / 333



231 / 333

Derivatives Mean value theorem Application of Differentiation

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (232 / 333

Derivatives Mean value theorem Application of Differentiation

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$

Limits Deriv Differentiation Mean Integration Appli

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$
 $f(x)$ has an oblique asymptote $y = x + 4$

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$
 $f(x)$ has an oblique asymptote $y = x + 4$
 $f'(x) = \frac{3x^2(x-2)^2 - 2(x-2)x^3}{(x-2)^4} = \frac{3x^2(x-2) - 2x^3}{(x-2)^3} = \frac{x^3 - 6x^2}{(x-2)^3}$

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$
 $f(x)$ has an oblique asymptote $y = x + 4$
 $f'(x) = \frac{3x^2(x-2)^2 - 2(x-2)x^3}{(x-2)^4} = \frac{3x^2(x-2) - 2x^3}{(x-2)^3} = \frac{x^3 - 6x^2}{(x-2)^3}$
 $f'(x) = 0$ when $x = 0, 6$

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$
 $f(x)$ has an oblique asymptote $y = x + 4$
 $f'(x) = \frac{3x^2(x-2)^2 - 2(x-2)x^3}{(x-2)^4} = \frac{3x^2(x-2) - 2x^3}{(x-2)^3} = \frac{x^3 - 6x^2}{(x-2)^3}$
 $f'(x) = 0$ when $x = 0, 6$
 $f''(x) = \frac{(3x^2 - 12x)(x-2)^3 - 3(x-2)^2(x^3 - 6x^2)}{(x-2)^6} = \frac{24x}{(x-2)^4}$

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > ○ Q (~ 232 / 333

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$
 $f(x)$ has an oblique asymptote $y = x + 4$
 $f'(x) = \frac{3x^2(x-2)^2 - 2(x-2)x^3}{(x-2)^4} = \frac{3x^2(x-2) - 2x^3}{(x-2)^3} = \frac{x^3 - 6x^2}{(x-2)^3}$
 $f'(x) = 0$ when $x = 0, 6$
 $f''(x) = \frac{(3x^2 - 12x)(x-2)^3 - 3(x-2)^2(x^3 - 6x^2)}{(x-2)^6} = \frac{24x}{(x-2)^4}$
 $f''(x) = 0$ when $x = 0$.

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > ○ Q (~ 232 / 333

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$
 $f(x)$ has an oblique asymptote $y = x + 4$
 $f'(x) = \frac{3x^2(x-2)^2 - 2(x-2)x^3}{(x-2)^4} = \frac{3x^2(x-2) - 2x^3}{(x-2)^3} = \frac{x^3 - 6x^2}{(x-2)^3}$
 $f'(x) = 0$ when $x = 0, 6$
 $f''(x) = \frac{(3x^2 - 12x)(x-2)^3 - 3(x-2)^2(x^3 - 6x^2)}{(x-2)^6} = \frac{24x}{(x-2)^4}$
 $f''(x) = 0$ when $x = 0$.

	$(-\infty,0)$	(0, 2)	(2, 6)	$(6, +\infty)$
f'(x)	+	+		+
f''(x)	_	+	+	+

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$
 $f(x)$ has an oblique asymptote $y = x + 4$
 $f'(x) = \frac{3x^2(x-2)^2 - 2(x-2)x^3}{(x-2)^4} = \frac{3x^2(x-2) - 2x^3}{(x-2)^3} = \frac{x^3 - 6x^2}{(x-2)^3}$
 $f'(x) = 0$ when $x = 0, 6$
 $f''(x) = \frac{(3x^2 - 12x)(x-2)^3 - 3(x-2)^2(x^3 - 6x^2)}{(x-2)^6} = \frac{24x}{(x-2)^4}$
 $f''(x) = 0$ when $x = 0$.

	$(-\infty,0)$	(0, 2)	(2, 6)	$(6, +\infty)$
f'(x)	+	+		+
f''(x)	_	+	+	+

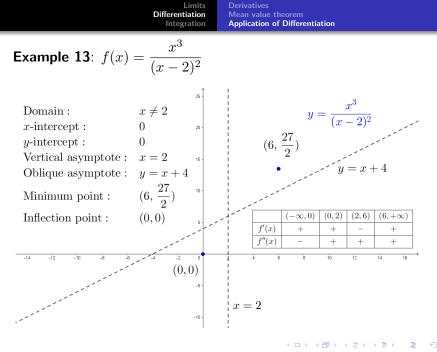
 $(6,\frac{27}{2})$ is minimum point.

Example 13:
$$f(x) = \frac{x^3}{(x-2)^2}$$

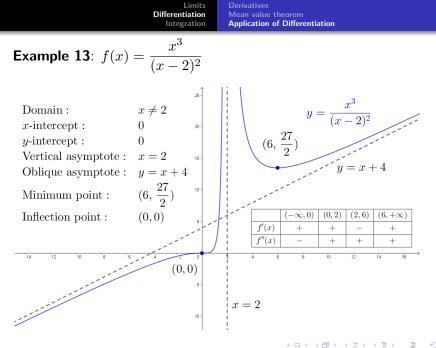
 $f(x) = x + 4 + \frac{12x - 16}{(x-2)^2}, x \neq 2$
 $f(x)$ has an oblique asymptote $y = x + 4$
 $f'(x) = \frac{3x^2(x-2)^2 - 2(x-2)x^3}{(x-2)^4} = \frac{3x^2(x-2) - 2x^3}{(x-2)^3} = \frac{x^3 - 6x^2}{(x-2)^3}$
 $f'(x) = 0$ when $x = 0, 6$
 $f''(x) = \frac{(3x^2 - 12x)(x-2)^3 - 3(x-2)^2(x^3 - 6x^2)}{(x-2)^6} = \frac{24x}{(x-2)^4}$
 $f''(x) = 0$ when $x = 0$.

ſ		$(-\infty,0)$	(0, 2)	(2, 6)	$(6, +\infty)$
	f'(x)	+	+		+
	f''(x)	_	+	+	+

 $(6, \frac{27}{2})$ is minimum point. (0,0) is an inflection point.



233 / 333



234 / 333

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

First

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

First
 $\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}}{x} = \lim_{x \to \pm \infty} \left(1 - \frac{3}{x}\right)^{\frac{2}{3}} = 1$

and

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

First
 $\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}}{x} = \lim_{x \to \pm \infty} \left(1 - \frac{3}{x}\right)^{\frac{2}{3}} = 1$

 $\quad \text{and} \quad$

$$\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} x \left(\left(1 - \frac{3}{x} \right)^{\frac{2}{3}} - 1 \right)$$
$$= \lim_{h \to 0} \frac{(1 - 3h)^{\frac{2}{3}} - 1}{h}$$
$$= -2$$

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

First
 $\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}}{x} = \lim_{x \to \pm \infty} \left(1 - \frac{3}{x}\right)^{\frac{2}{3}} = 1$

and

$$\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} x \left(\left(1 - \frac{3}{x} \right)^{\frac{2}{3}} - 1 \right)$$
$$= \lim_{h \to 0} \frac{(1 - 3h)^{\frac{2}{3}} - 1}{h}$$
$$= -2$$

◆□ > ◆□ > ◆臣 > ◆臣 > □ 三 の < ⊙

235 / 333

Thus y = x - 2 is an oblique asymptote.

Limits Differentiation

Derivatives Mean value theorem Application of Differentiation

Example 14: $f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$

Limits Differentiation Integration Derivatives Mean value theorem Application of Differentiation

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

 $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}(x-3)^{\frac{2}{3}} + \frac{2}{3}x^{\frac{1}{3}}(x-3)^{-\frac{1}{3}}$
 $= \frac{x-1}{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}}$

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

 $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}(x-3)^{\frac{2}{3}} + \frac{2}{3}x^{\frac{1}{3}}(x-3)^{-\frac{1}{3}}$
 $= \frac{x-1}{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}}$

f'(x) = 0 when x = 1 and f'(x) does not exist when x = 0, 3.

Limits	
Differentiation	
Integration	

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

 $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}(x-3)^{\frac{2}{3}} + \frac{2}{3}x^{\frac{1}{3}}(x-3)^{-\frac{1}{3}}$
 $= \frac{x-1}{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}}$
 $f'(x) = 0$ when $x = 1$ and $f'(x)$ does not exist when $x = 0, 3$.
 $f''(x) = \frac{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}} - (\frac{2}{3}x^{-\frac{1}{3}}(x-3)^{\frac{1}{3}} + \frac{1}{3}x^{\frac{2}{3}}(x-3)^{-\frac{2}{3}})(x-1)}{x^{\frac{4}{3}}(x-3)^{\frac{2}{3}}}$
 $= \frac{3x(x-3) - (2(x-3)+x)(x-1)}{3x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$
 $= -\frac{2}{x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$

Limits	D
Differentiation	M
Integration	A

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

 $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}(x-3)^{\frac{2}{3}} + \frac{2}{3}x^{\frac{1}{3}}(x-3)^{-\frac{1}{3}}$
 $= \frac{x-1}{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}}$
 $f'(x) = 0$ when $x = 1$ and $f'(x)$ does not exist when $x = 0, 3$.
 $f''(x) = \frac{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}} - (\frac{2}{3}x^{-\frac{1}{3}}(x-3)^{\frac{1}{3}} + \frac{1}{3}x^{\frac{2}{3}}(x-3)^{-\frac{2}{3}})(x-1)}{x^{\frac{4}{3}}(x-3)^{\frac{2}{3}}}$
 $= \frac{3x(x-3) - (2(x-3)+x)(x-1)}{3x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$
 $= -\frac{2}{x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$

f''(x) does not exist when x = 0, 3.

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

 $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}(x-3)^{\frac{2}{3}} + \frac{2}{3}x^{\frac{1}{3}}(x-3)^{-\frac{1}{3}}$
 $= \frac{x-1}{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}}$
 $f'(x) = 0$ when $x = 1$ and $f'(x)$ does not exist when $x = 0, 3$.
 $f''(x) = \frac{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}} - (\frac{2}{3}x^{-\frac{1}{3}}(x-3)^{\frac{1}{3}} + \frac{1}{3}x^{\frac{2}{3}}(x-3)^{-\frac{2}{3}})(x-1)}{x^{\frac{4}{3}}(x-3)^{\frac{2}{3}}}$
 $= \frac{3x(x-3) - (2(x-3)+x)(x-1)}{3x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$
 $= -\frac{2}{x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$

f''(x) does not exist when x = 0, 3.

		$(-\infty,0)$	(0, 1)	(1,3)	$(3, +\infty)$
ſ	f'(x)	+	+	-	+
	f''(x)	+	—	—	—

Limits	Derivatives
Differentiation	Mean value theorem
Integration	Application of Differentiation
$\frac{1}{2}$ (a) $\frac{2}{2}$	

Example 14:
$$f(x) = x^3 (x-3)^3$$

 $f'(x) = \frac{1}{3} x^{-\frac{2}{3}} (x-3)^{\frac{2}{3}} + \frac{2}{3} x^{\frac{1}{3}} (x-3)^{-\frac{1}{3}}$
 $= \frac{x-1}{x^{\frac{2}{3}} (x-3)^{\frac{1}{3}}}$
 $f'(x) = 0$ when $x = 1$ and $f'(x)$ does not exist when $x = 0, 3$.
 $f''(x) = \frac{x^{\frac{2}{3}} (x-3)^{\frac{1}{3}} - (\frac{2}{3} x^{-\frac{1}{3}} (x-3)^{\frac{1}{3}} + \frac{1}{3} x^{\frac{2}{3}} (x-3)^{-\frac{2}{3}})(x-1)}{x^{\frac{4}{3}} (x-3)^{\frac{2}{3}}}$
 $= \frac{3x(x-3) - (2(x-3) + x)(x-1)}{3x^{\frac{5}{3}} (x-3)^{\frac{4}{3}}}$
 $= -\frac{2}{x^{\frac{5}{3}} (x-3)^{\frac{4}{3}}}$

f''(x) does not exist when x = 0, 3.

e ()

	$(-\infty,0)$	(0, 1)	(1, 3)	$(3, +\infty)$
f'(x)	+	+	—	+
f''(x)	+	—	—	—

 $(1,2^{\frac{2}{3}})$ is a maximum point.

Limits	Derivative
Differentiation	Mean valu
Integration	Applicatio

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

 $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}(x-3)^{\frac{2}{3}} + \frac{2}{3}x^{\frac{1}{3}}(x-3)^{-\frac{1}{3}}$
 $= \frac{x-1}{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}}$
 $f'(x) = 0$ when $x = 1$ and $f'(x)$ does not exist when $x = 0, 3$.
 $f''(x) = \frac{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}} - (\frac{2}{3}x^{-\frac{1}{3}}(x-3)^{\frac{1}{3}} + \frac{1}{3}x^{\frac{2}{3}}(x-3)^{-\frac{2}{3}})(x-1)}{x^{\frac{4}{3}}(x-3)^{\frac{2}{3}}}$
 $= \frac{3x(x-3) - (2(x-3) + x)(x-1)}{3x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$
 $= -\frac{2}{x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$

f''(x) does not exist when x = 0, 3.

	$(-\infty,0)$	(0,1)	(1, 3)	$(3, +\infty)$
f'(x)	+	+	—	+
$f^{\prime\prime}(x)$	+	—	—	—

 $(1,2^{\frac{2}{3}})$ is a maximum point. (3,0) is a minimum point.

Limits	Deriva
Differentiation	Mean
Integration	Applic

Example 14:
$$f(x) = x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$$

 $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}(x-3)^{\frac{2}{3}} + \frac{2}{3}x^{\frac{1}{3}}(x-3)^{-\frac{1}{3}}$
 $= \frac{x-1}{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}}$
 $f'(x) = 0$ when $x = 1$ and $f'(x)$ does not exist when $x = 0, 3$.
 $f''(x) = \frac{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}} - (\frac{2}{3}x^{-\frac{1}{3}}(x-3)^{\frac{1}{3}} + \frac{1}{3}x^{\frac{2}{3}}(x-3)^{-\frac{2}{3}})(x-1)}{x^{\frac{4}{3}}(x-3)^{\frac{2}{3}}}$
 $= \frac{3x(x-3) - (2(x-3)+x)(x-1)}{3x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$
 $= -\frac{2}{x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}$

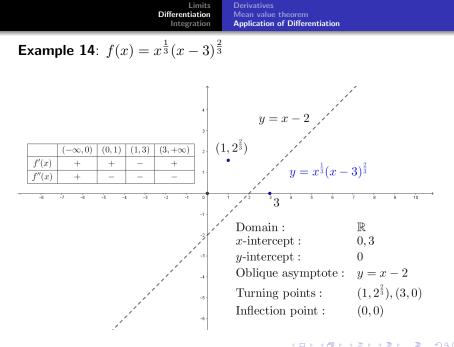
f''(x) does not exist when x = 0, 3.

	$(-\infty,0)$	(0,1)	(1, 3)	$(3, +\infty)$
f'(x)	+	+	—	+
$f^{\prime\prime}(x)$	+	—	—	—

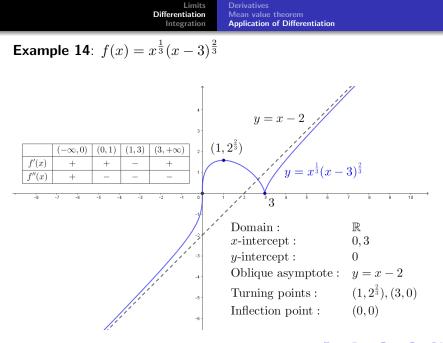
 $(1,2^{\frac{2}{3}})$ is a maximum point.

(3,0) is a minimum point.

 $\left(0,0\right)$ is an inflection point.



237 / 333



Indefinite integral and substitution

Definition

Let f(x) be a continuous function. A **primitive function**, or an **anti-derivative**, of f(x) is a function F(x) such that

F'(x) = f(x).

The collection of all anti-derivatives of f(x) is called the **indefinite** integral of f(x) and is denoted by

$$\int f(x)dx.$$

The function f(x) is called the **integrand** of the integral.

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Note: Anti-derivative of a function is not unique. If F(x) is an anti-derivative of f, then F(x) + C is an anti-derivative of f(x) for any constant C. Moreover, any anti-derivative of f(x) is of the form F(x) + C and we write

$$\int f(x)dx = F(x) + C$$

where C is arbitrary constant called the **integration constant**. Note that $\int f(x)dx$ is not a single function but a collection of functions.

Theorem

Let f(x) and g(x) be continuous functions and k be a constant.

$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

$$\int kf(x)dx = k \int f(x)dx$$

Theorem (formulas for indefinite integrals)

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq 1$$

$$\int e^x dx = e^x + C; \qquad \int \frac{1}{x} dx = \ln|x| + C$$

$$\int \cos x dx = \sin x + C; \qquad \int \sin x dx = -\cos x + C$$

$$\int \sec^2 x dx = \tan x + C; \qquad \int \csc^2 x dx = -\cot x + C$$

$$\int \sec x \tan x dx = \sec x + C; \qquad \int \csc x \cot x dx = -\csc x + C$$

 Limits
 Integration

 Differentiation
 Techniques of Integration

 Integration
 More Techniques of Integration

Example

$$1. \int (x^3 - x + 5)dx = \frac{x^4}{4} - \frac{x^2}{2} + 5x + C$$

$$2. \int \frac{(x+1)^2}{x} dx = \int \frac{x^2 + 2x + 1}{x} dx$$

$$= \int \left(x + 2 + \frac{1}{x}\right) dx$$

$$= \frac{x^2}{2} + 2x + \ln|x| + C$$

$$3. \int \frac{3x^2 + \sqrt{x} - 1}{\sqrt{x}} dx = \int \left(3x^{3/2} + 1 - x^{-1/2}\right) dx$$

$$= \frac{6}{5}x^{\frac{5}{2}} + x - 2x^{\frac{1}{2}} + C$$

$$4. \int \left(\frac{3\sin x}{\cos^2 x} - 2e^x\right) dx = \int (3\sec x \tan x - 2e^x) dx$$

$$= 3\sec x - 2e^x + C$$

Limits Differentiation Integration Integration Techniques of Integration More Techniques of Integration

. Example

Suppose we want to compute

$$\int x\sqrt{x^2+4}\,dx$$

First we let

Limits Differentiation Integration

Integration Techniques of Integration More Techniques of Integration

Example

Suppose we want to compute

$$\int x\sqrt{x^2+4}\,dx$$

First we let

$$u = x^2 + 4.$$

We may formally write

Example

Suppose we want to compute

$$\int x\sqrt{x^2+4}\,dx$$

First we let

$$u = x^2 + 4$$

We may formally write

$$du = \frac{du}{dx} dx = \left[\frac{d}{dx}(x^2 + 4)\right] dx = 2xdx$$

Here du is called the differential of u defined as $\frac{du}{dx} dx$. Thus the integral is

243 / 333

- 4 回 ト 4 回 ト 4 回 ト

Limits Integration Differentiation Techniques Integration More Techn

Integration Techniques of Integration More Techniques of Integration

Example

Suppose we want to compute

$$\int x\sqrt{x^2+4}\,dx$$

First we let

$$u = x^2 + 4.$$

We may formally write

$$du = \frac{du}{dx} dx = \left[\frac{d}{dx}(x^2 + 4)\right] dx = 2xdx$$

Here du is called the differential of u defined as $\frac{du}{dx} dx$. Thus the integral is

$$\int x\sqrt{x^2+4} \, dx = \frac{1}{2} \int \sqrt{x^2+4}(2xdx) = \frac{1}{2} \int \sqrt{u} \, du$$

Limits Integration Differentiation Techniques Integration More Techn

Integration Techniques of Integration More Techniques of Integration

Example

Suppose we want to compute

$$\int x\sqrt{x^2+4}\,dx$$

First we let

$$u = x^2 + 4.$$

We may formally write

$$du = \frac{du}{dx} dx = \left[\frac{d}{dx}(x^2 + 4)\right] dx = 2xdx$$

Here du is called the differential of u defined as $\frac{du}{dx} dx$. Thus the integral is

$$\int x\sqrt{x^2+4} \, dx = \frac{1}{2} \int \sqrt{x^2+4}(2xdx) = \frac{1}{2} \int \sqrt{u} \, du$$
$$= \frac{u^{\frac{3}{2}}}{3} + C = \frac{(x^2+4)^{\frac{3}{2}}}{3} + C$$

243 / 333

э

・ロト ・回ト ・ヨト ・ヨト

Example

$$\int x\sqrt{x^2+4}\,dx = \int \sqrt{x^2+4}\,d\left(\frac{x^2}{2}\right)$$

Example

$$\int x\sqrt{x^2+4} \, dx = \int \sqrt{x^2+4} \, d\left(\frac{x^2}{2}\right)$$
$$= \frac{1}{2} \int \sqrt{x^2+4} \, dx^2$$

Example

$$\int x\sqrt{x^2 + 4} \, dx = \int \sqrt{x^2 + 4} \, d\left(\frac{x^2}{2}\right)$$
$$= \frac{1}{2} \int \sqrt{x^2 + 4} \, dx^2$$
$$= \frac{1}{2} \int \sqrt{x^2 + 4} \, d(x^2 + 4)$$

Example

$$\int x\sqrt{x^2+4} \, dx = \int \sqrt{x^2+4} \, d\left(\frac{x^2}{2}\right)$$
$$= \frac{1}{2} \int \sqrt{x^2+4} \, dx^2$$
$$= \frac{1}{2} \int \sqrt{x^2+4} \, d(x^2+4)$$
$$= \frac{(x^2+4)^{\frac{3}{2}}}{3} + C$$

Theorem

Let f(x) be a continuous function defined on [a, b]. Suppose there exists a differentiable function $u = \varphi(x)$ and continuous function g(u) such that $f(x) = g(\varphi(x))\varphi'(x)$ for any $x \in (a, b)$. Then

$$\int f(x)dx = \int g(\varphi(x))\varphi'(x)dx$$
$$= \int g(u)du$$

・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ 三 ・ つ へ ()
245 / 333

Example

=

=

=

$$\int x^2 e^{x^3 + 1} dx \qquad \qquad \int x^2 e^{x^3 + 1} dx$$
Let $u = x^3 + 1$, $= \int e^{x^3 + 1} d\left(\frac{x^3}{3}\right)$
then $du = 3x^2 dx \qquad = \frac{1}{3} \int e^{x^3 + 1} dx^3$
 $\frac{1}{3} \int e^u du \qquad = \frac{1}{3} \int e^{x^3 + 1} d(x^3 + 1)$
 $\frac{e^u}{3} + C \qquad = \frac{e^{x^3 + 1}}{3} + C$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Example

$$\int \cos^4 x \sin x dx \qquad \qquad \int \cos^4 x \sin x dx$$
Let $u = \cos x$, $= \int \cos^4 x d(-\cos x)$
then $du = -\sin x dx \qquad = -\int \cos^4 x d \cos x$
 $= -\int u^4 du \qquad = -\frac{\cos^5 x}{5} + C$
 $= -\frac{\cos^5 x}{5} + C$

・ロ ・ ・ 一 ト ・ 三 ト ・ 三 ・ 三 ・ つ へ ()
247 / 333

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Example

$$\int \frac{dx}{x \ln x} \qquad \qquad \int \frac{dx}{x \ln x}$$
Let $u = \ln x$, $= \int \frac{d \ln x}{\ln x}$
then $du = \frac{dx}{x} = \ln |\ln x| + C$

$$= \int \frac{du}{u}$$

$$= \ln |u| + C$$

$$= \ln |\ln x| + C$$

Limits Integration

Integration Techniques of Integration More Techniques of Integration

=

=

Example

$$\int \frac{dx}{e^x + 1}$$

Let $u = 1 + e^{-x}$,
then $du = -e^{-x}dx$
$$= \int \frac{e^{-x}dx}{1 + e^{-x}}$$
$$= -\int \frac{du}{u}$$
$$= -\ln u + C$$
$$= -\ln(1 + e^{-x}) + C$$
$$= x - \ln(1 + e^x) + C$$

$$\int \frac{dx}{e^x + 1}$$

$$= \int \left(1 - \frac{e^x}{1 + e^x}\right) dx$$

$$= x - \int \frac{de^x}{1 + e^x}$$

$$= x - \ln(1 + e^x) + C$$

<ロ> (四) (四) (注) (日) (日) 2 249 / 333

Example

$$\int \frac{dx}{1 + \sqrt{x}}$$
Let $u = 1 + \sqrt{x}$,
then $du = \frac{dx}{2\sqrt{x}}$
 $= 2 \int \frac{(u - 1)du}{u}$
 $= 2 \int \left(1 - \frac{1}{u}\right) du$
 $= 2u - 2 \ln u + C'$

$$= 2 \int \left(1 - \frac{1}{1 + \sqrt{x}}\right) d\sqrt{x}$$
$$= 2\sqrt{x} - 2\ln(1 + \sqrt{x}) + C$$

 $\int \frac{dx}{1+\sqrt{x}}$ $= \int \frac{\sqrt{x} \, dx}{\sqrt{x}(1+\sqrt{x})}$ $= 2 \int \frac{\sqrt{x} \, d\sqrt{x}}{1+\sqrt{x}}$

$$= 2\sqrt{x} - 2\ln(1 + \sqrt{x}) + C$$

・ロ ・ ・ 日 ・ ・ 言 ・ ・ 言 ・ う へ で
250 / 333

Limits Differentiation Integration Integration Techniques of Integration More Techniques of Integration

Definite integral

Definition

Let $f(\boldsymbol{x})$ be a function on $[\boldsymbol{a},\boldsymbol{b}].$ A Partition of $[\boldsymbol{a},\boldsymbol{b}]$ is a set of finite points

$$P = \{x_0 = a < x_1 < x_2 < \dots < x_n = b\}$$

and we define

$$\Delta x_k = x_k - x_{k-1}, \text{ for } k = 1, 2, \dots, n$$
$$\|P\| = \max_{1 \le k \le n} \{\Delta x_k\}$$

・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ 三 の へ (* 251 / 333

Definition

Let f(x) be a function on [a,b]. The lower and upper Riemann sums with respect to partition P are

$$\mathcal{L}(f,P) = \sum_{k=1}^{n} m_k \Delta x_k, \text{ and } \mathcal{U}(f,P) = \sum_{k=1}^{n} M_k \Delta x_k$$

where

$$m_k = \inf\{f(x) : x_{k-1} \le x \le x_k\}, \text{ and } M_k = \sup\{f(x) : x_{k-1} \le x \le x_k\}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 252 / 333

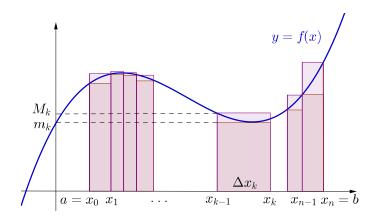


Figure: Upper and lower Riemann sum

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Integration Techniques of Integration More Techniques of Integration

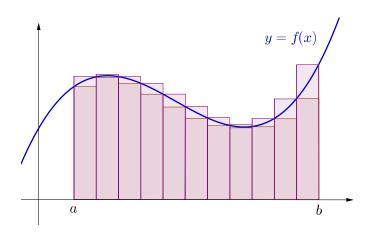


Figure: Upper and lower Riemann sum

Definition (Riemann integral)

Let [a, b] be a closed and bounded interval and $f : [a, b] \to \mathbb{R}$ be a real valued function defined on [a, b]. We say that f(x) is **Riemann integrable** on [a, b] if the limits of $\mathcal{L}(f, P)$ and $\mathcal{U}(f, P)$ exist as ||P|| tends to 0 and are equal. In this case, we define the **Riemann integral** of f(x) over [a, b] by

$$\int_{a}^{b} f(x)dx = \lim_{\|P\|\to 0} \mathcal{L}(f, P) = \lim_{\|P\|\to 0} \mathcal{U}(f, P).$$

Note: We say that $\lim_{\|P\|\to 0} \mathcal{L}(f, P) = L$ if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that if $\|P\| < \delta$, then $|\mathcal{L}(f, P) - L| < \varepsilon$.

 Limits
 Integration

 Differentiation
 Techniques of Integration

 Integration
 More Techniques of Integration

Theorem

Let f(x) and g(x) be integrable functions on [a,b], a < c < b and k be constants.

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

・ロ ・ ・ 一 ・ ・ 三 ト ・ 三 ト ・ 三 ・ つ Q (*) 256 / 333
 Limits
 Integration

 Differentiation
 Techniques of Integration

 Integration
 More Techniques of Integration

Theorem

Suppose f(x) is a continuous function on [a,b]. Then f(x) is Riemann integrable on [a,b] and we have

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k})\Delta x_{k}$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} f\left(a + \frac{k}{n}(b-a)\right)\left(\frac{b-a}{n}\right).$$

・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ (や 257 / 333

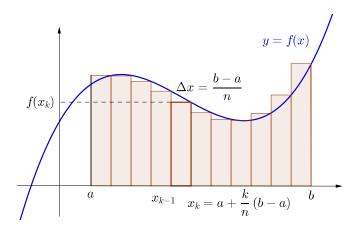


Figure: Formula for Riemann integral

Limits Differentiation Integration Integration Techniques of Integration More Techniques of Integration

Example

Use the formula for definite integral of continuous function to evaluate

 $\int_0^1 x^2 dx$

Solution

$$\int_{0}^{1} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(0 + \frac{k}{n} (1-0) \right)^{2} \left(\frac{1-0}{n} \right)$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{2}}{n^{3}}$$
$$= \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^{3}}$$
$$= \frac{1}{3}$$

259 / 333

Fundamental theorem of calculus

Theorem (Fundamental theorem of calculus)

First part: Let f(x) be a function which is continuous on [a, b]. Let $F : [a, b] \to \mathbb{R}$ be the function defined by

$$F(x) = \int_{a}^{x} f(t)dt$$

Then F(x) is continuous on [a, b], differentiable on (a, b) and

$$F'(x) = f(x).$$

for any $x \in (a, b)$. Put in another way, we have

$$\frac{d}{dx}\int_a^x f(t)dt = f(x) \quad \text{for } x \in (a,b).$$

260 / 333

A (10) > A (10) > A

 Limits
 Integration

 Differentiation
 Techniques of Integration

 Integration
 More Techniques of Integration

Theorem (Fundamental theorem of calculus)

Second part: Let f(x) be a function which is continuous on [a, b]. Let F(x) be a primitive function of f(x), in other words, F(x) is a continuous function on [a, b] and F'(x) = f(x) for any $x \in (a, b)$. Then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Let $f(x) = \sqrt{1 - x^2}$. The graph of y = f(x) is a unit semicircle centered at the origin. Using the formula for area of circular sectors, we calculate

$$F(x)=\int_0^x f(t)dt=\int_0^x \sqrt{1-t^2}dt=$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Let $f(x) = \sqrt{1 - x^2}$. The graph of y = f(x) is a unit semicircle centered at the origin. Using the formula for area of circular sectors, we calculate

$$F(x) = \int_0^x f(t)dt = \int_0^x \sqrt{1 - t^2}dt = \frac{x\sqrt{1 - x^2}}{2} + \frac{\sin^{-1}x}{2}$$

By fundamental theorem of calculus, we know that F(x) is an anti-derivative of f(x). One may check this by differentiating F(x) and get

F'(x) =

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Let $f(x) = \sqrt{1 - x^2}$. The graph of y = f(x) is a unit semicircle centered at the origin. Using the formula for area of circular sectors, we calculate

$$F(x) = \int_0^x f(t)dt = \int_0^x \sqrt{1 - t^2}dt = \frac{x\sqrt{1 - x^2}}{2} + \frac{\sin^{-1}x}{2}$$

By fundamental theorem of calculus, we know that F(x) is an anti-derivative of f(x). One may check this by differentiating F(x) and get

$$F'(x) = \frac{1}{2} \left(\sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - x^2}} \right)$$

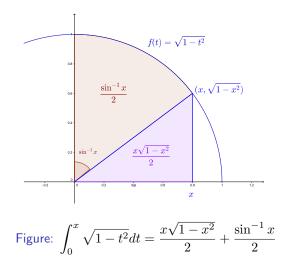
Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Let $f(x) = \sqrt{1 - x^2}$. The graph of y = f(x) is a unit semicircle centered at the origin. Using the formula for area of circular sectors, we calculate

$$F(x) = \int_0^x f(t)dt = \int_0^x \sqrt{1 - t^2}dt = \frac{x\sqrt{1 - x^2}}{2} + \frac{\sin^{-1}x}{2}$$

By fundamental theorem of calculus, we know that F(x) is an anti-derivative of f(x). One may check this by differentiating F(x) and get

$$F'(x) = \frac{1}{2} \left(\sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - x^2}} \right)$$
$$= \frac{1}{2} \left(\frac{1 - x^2 - x^2 + 1}{\sqrt{1 - x^2}} \right)$$
$$= \sqrt{1 - x^2}$$
$$= f(x)$$



< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 263 / 333

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integrati

$$1. \int_{1}^{3} (x^{3} - 4x + 5) dx = \left[\frac{x^{4}}{4} - 2x^{2} + 5x \right]_{1}^{3}$$

$$= \left[\left(\frac{3^{4}}{4} - 2(3^{2}) + 5(3) \right) - \left(\frac{1^{4}}{4} - 2(1^{2}) + 5(1) \right) \right]$$

$$= 14$$

$$2. \int_{-3}^{0} e^{2x + 6} dx = \left[\frac{e^{2x + 6}}{2} \right]_{-3}^{0}$$

$$= \frac{e^{6} - 1}{2}$$

$$3. \int_{0}^{\frac{\pi}{12}} \sec^{2} 3x \, dx = \left[\frac{\tan 3x}{3} \right]_{0}^{\frac{\pi}{12}}$$

$$= \frac{\tan 3(\frac{\pi}{12}) - \tan 0}{3}$$

$$= \frac{1}{3}$$

<ロト < 回 > < 目 > < 目 > < 目 > < 目 > 264 / 333

Example (Definite integral and substitution)

1.
$$\int_{3}^{5} x\sqrt{x^{2}-9} dx$$
$$\int_{3}^{5} x\sqrt{x^{2}-9} dx$$
$$Let \ u = x^{2}-9,$$
$$When \ x = 3, \ u = 0$$
$$When \ x = 5, \ u = 16$$
$$du = 2xdx$$
$$= \frac{1}{2} \int_{0}^{16} \sqrt{u} du$$
$$= \left[\frac{u^{\frac{3}{2}}}{3}\right]_{0}^{16}$$
$$= \frac{64}{3}$$

Example (Definite integral and substitution)

2.

$$\int_{0}^{\pi^{2}} \frac{\sin \sqrt{x}}{\sqrt{x}} dx \qquad \qquad \int_{0}^{\pi^{2}} \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$
Let $u = \sqrt{x}$,
When $x = 0$, $u = 0$

$$= 2 \int_{0}^{\pi^{2}} \sin \sqrt{x} d\sqrt{x}$$
When $x = \pi^{2}$, $u = \pi$

$$= 2 \left[-\cos \sqrt{x} \right]_{0}^{\pi^{2}}$$

$$= 2 \left[-\cos \sqrt{\pi^{2}} - (-\cos 0) \right]$$

$$= 4$$

$$2 \int_{0}^{\pi} \sin u \, du$$

$$2 \left[-\cos u \right]_{0}^{\pi}$$

= 4

=

=

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

We have the following formulas for derivatives of functions defined by integrals.

$$\begin{array}{l} \bullet \quad \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x) \\ \bullet \quad \frac{d}{dx} \int_{x}^{b} f(t)dt = \end{array}$$

 Limits
 Integration

 Differentiation
 Techniques of Integration

 Integration
 More Techniques of Integration

Example

We have the following formulas for derivatives of functions defined by integrals.

$$\begin{array}{l} \bullet \quad \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x) \\ \bullet \quad \frac{d}{dx} \int_{x}^{b} f(t)dt = -f(x) \\ \bullet \quad \frac{d}{dx} \int_{a}^{v(x)} f(t)dt = \end{array}$$

・ロ ・ ・ 一 ・ ・ 注 ・ ・ 注 ・ 注 ・ つ へ (?)
267 / 333

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

We have the following formulas for derivatives of functions defined by integrals.

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

$$\frac{d}{dx} \int_{x}^{b} f(t)dt = -f(x)$$

$$\frac{d}{dx} \int_{a}^{v(x)} f(t)dt = f(v)\frac{dv}{dx}$$

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(t)dt =$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

We have the following formulas for derivatives of functions defined by integrals.

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

$$\frac{d}{dx} \int_{x}^{b} f(t)dt = -f(x)$$

$$\frac{d}{dx} \int_{a}^{v(x)} f(t)dt = f(v)\frac{dv}{dx}$$

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(t)dt = f(v)\frac{dv}{dx} - f(u)\frac{du}{dx}$$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ の へ ()
267 / 333

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Proof.

1. This is the first part of fundamental theorem of calculus.

2.
$$\frac{d}{dx} \int_{x}^{b} f(t)dt = \frac{d}{dx} \left(-\int_{b}^{x} f(t)dt \right)$$
$$= -f(x)$$

3.
$$\frac{d}{dx} \int_{a}^{v(x)} f(t)dt = \left(\frac{d}{dv} \int_{a}^{v(x)} f(t)dt \right) \frac{dv}{dx}$$
$$= f(v) \frac{dv}{dx}$$

4.
$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(t)dt = \frac{d}{dx} \left(\int_{c}^{v(x)} f(t)dt + \int_{u(x)}^{c} f(t)dt \right)$$
$$= \frac{d}{dx} \left(\int_{c}^{v(x)} f(t)dt - \int_{c}^{u(x)} f(t)dt \right)$$
$$= f(v) \frac{dv}{dx} - f(u) \frac{du}{dx}$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Find F'(x) for the the functions. • $F(x) = \int_{1}^{x} \sqrt{t}e^{t}dt$ • $F(x) = \int_{x}^{\pi} \frac{\sin t}{t}dt$ • $F(x) = \int_{0}^{\sin x} \sqrt{1+t^{4}}dt$ • $F(x) = \int_{-x}^{x^{2}} e^{t^{2}}dt$
 Limits
 Integration

 Differentiation
 Techniques of Integration

 Integration
 More Techniques of Integration

Solution

$$1. \frac{d}{dx} \int_{1}^{x} \sqrt{t}e^{t} dt = \sqrt{x}e^{x}$$

$$2. \frac{d}{dx} \int_{x}^{\pi} \frac{\sin t}{t} dt = -\frac{\sin x}{x}$$

$$3. \frac{d}{dx} \int_{0}^{\sin x} \sqrt{1+t^{4}} dt = \sqrt{1+\sin^{4} x} \frac{d}{dx} \sin x$$

$$= \cos x \sqrt{1+\sin^{4} x}$$

$$4. \frac{d}{dx} \int_{-x}^{x^{2}} e^{t^{2}} dt = e^{(x^{2})^{2}} \frac{d}{dx} x^{2} - e^{(-x)^{2}} \frac{d}{dx} (-x)$$

$$= 2xe^{x^{4}} + e^{x^{2}}$$

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > 270 / 333

Integration Techniques of Integration More Techniques of Integration

Trigonometric integrals

Techniques

Useful identities for trigonometric integrals.

•
$$\cos^2 x + \sin^2 x = 1$$
• $\sec^2 x = 1 + \tan^2 x$
• $\csc^2 x = 1 + \cot^2 x$
• $\csc^2 x = \frac{1 + \cos 2x}{2}$
• $\sin^2 x = \frac{1 - \cos 2x}{2}$
• $\cos x \sin x = \frac{\sin 2x}{2}$
• $\cos x \sin x = \frac{\sin 2x}{2}$
• $\cos x \sin y = \frac{1}{2}(\cos(x+y) + \cos(x-y))$
• $\cos x \sin y = \frac{1}{2}(\sin(x+y) - \sin(x-y))$
• $\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y))$

271/333

Techniques

To evaluate

$$\int \cos^m x \sin^n x dx$$

where m, n are non-negative integers,

- Case 1. If m is odd, use $\cos x dx = d \sin x$. (Substitute $u = \sin x$.)
- Case 2. If n is odd, use $\sin x dx = -d \cos x$. (Substitute $u = \cos x$.)
- Case 3. If both m, n are even, then use double angle formulas to reduce the power.

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
$$\cos x \sin x = \frac{\sin 2x}{2}$$

Techniques

$$\int \tan x dx = \ln |\sec x| + C$$

$$\int \cot x dx = \ln |\sin x| + C$$

$$\int \sec x dx = \ln |\sec x + \tan x| + C$$

$$\int \csc x dx = \ln |\sec x - \cot x| + C$$

Proof

We prove (1), (3) and the rest are left as exercise. 1. $\int \tan x dx = \int \frac{\sin x dx}{\cos x}$ $= -\int \frac{d\cos x}{\cos x}$ $= -\ln |\cos x| + C$ $\ln |\sec x| + C$ 3. $\int \sec x dx = \int \frac{\sec x (\sec x + \tan x) dx}{(\sec x + \tan x)}$ $= \int \frac{(\sec^2 x + \sec x \tan x)dx}{(\sec x + \tan x)}$ $= \int \frac{d(\tan x + \sec x)}{(\sec x + \tan x)}$ $= \ln |\sec x + \tan x| + C$

Techniques

To evaluate

$$\int \sec^m x \tan^n x dx$$

where m, n are non-negative integers,

- Case 1. If m is even, use $\sec^2 x dx = d \tan x$. (Substitute $u = \tan x$.)
- Case 2. If n is odd, use $\sec x \tan x dx = d \sec x$. (Substitute $u = \sec x$.)
- Case 3. If both m is odd and n is even, use $\tan^2 x = \sec^2 x 1$ to write everything in terms of $\sec x$.

Example

Evaluate the following integrals.

・ロ ・ ・ 一 ・ ・ 注 ト ・ 注 ・ 注 の Q (?)
276 / 333

Solution

1.
$$\int \sin^2 x dx = \int \left(\frac{1-\cos 2x}{2}\right) dx = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

2.
$$\int \cos^4 x dx = \int \left(\frac{1+\cos 2x}{2}\right)^2 dx$$

$$= \int \left(\frac{1+2\cos 2x + \cos^2 2x}{4}\right) dx$$

$$= \frac{x}{4} + \frac{\sin 2x}{4} + \int \left(\frac{1+\cos 4x}{8}\right) dx$$

$$= \frac{3x}{8} + \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C$$

3.
$$\int \cos 2x \cos x dx = \frac{1}{2} \int (\cos 3x + \cos x) dx = \frac{\sin 3x}{6} + \frac{\sin x}{2} + C$$

4.
$$\int \cos 3x \sin 5x dx = \frac{1}{2} \int (\sin 8x + \sin 2x) dx = -\frac{\cos 8x}{16} - \frac{\cos 2x}{4} + C$$

Example

Evaluate the following integrals.

Solution

1.
$$\int \cos x \sin^4 x \, dx = \int \sin^4 x \, d \sin x = \frac{\sin^5 x}{5} + C$$

2.
$$\int \cos^2 x \sin^3 x \, dx = -\int \cos^2 x (1 - \cos^2 x) \, d \cos x$$

$$= -\int (\cos^2 x - \cos^4 x) \, d \cos x$$

$$= -\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} C$$

3.
$$\int \cos^4 x \sin^2 x \, dx = \int \left(\frac{1 + \cos 2x}{2}\right) \left(\frac{\sin 2x}{2}\right)^2 \, dx$$

$$= \frac{1}{8} \int (\sin^2 2x + \cos 2x \sin^2 2x) \, dx$$

$$= \frac{1}{8} \int \left(\frac{1 - \cos 4x}{2}\right) \, dx + \frac{1}{16} \int \sin^2 2x \, d \sin 2x$$

$$= \frac{x}{16} - \frac{\sin 4x}{64} + \frac{\sin^3 2x}{48} + C$$

Example

Evaluate the following integrals.

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Solution

1.
$$\int \sec^2 x \tan^2 x dx = \int \tan^2 x d \tan x = \frac{\tan^3 x}{3} + C$$

2.
$$\int \sec x \tan^3 x dx = \int \tan^2 x d \sec x = \int (\sec^2 x - 1) d \sec x$$

$$= \frac{\sec^3 x}{3} - \sec x + C$$

3.
$$\int \tan^3 x dx = \int \tan x (\sec^2 x - 1) dx$$

$$= \int \tan x \sec^2 x dx - \int \tan x dx$$

$$= \int \tan x d \tan x - \ln |\sec x|$$

$$= \frac{\tan^2 x}{2} - \ln |\sec x| + C$$

Integration Techniques of Integration More Techniques of Integration

Integration by parts

Techniques

Suppose the integrand is of the form u(x)v'(x). Then we may evaluate the integration using the formula

$$\int uv'dx = uv - \int u'vdx.$$

The above formula is called integration by parts. It is usually written in the form

$$\int u dv = uv - \int v du.$$

Example

Evaluate the following integrals.

1.
$$\int xe^{3x} dx$$

2.
$$\int x^2 \cos x dx$$

3.
$$\int x^3 \ln x dx$$

4.
$$\int \ln x dx$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Solution

1.
$$\int xe^{3x} dx = \frac{1}{3} \int xde^{3x} = \frac{xe^{3x}}{3} - \frac{1}{3} \int e^{3x} dx$$

 $= \frac{xe^{3x}}{3} - \frac{e^{3x}}{9} + C$
2. $\int x^2 \cos x dx = \int x^2 d \sin x$
 $= x^2 \sin x - \int \sin x dx^2$
 $= x^2 \sin x - 2 \int x \sin x dx$
 $= x^2 \sin x + 2 \int x d \cos x$
 $= x^2 \sin x + 2x \cos x - 2 \int \cos x dx$
 $= x^2 \sin x + 2x \cos x - 2 \sin x + C$

Solution

3.
$$\int x^{3} \ln x dx = \frac{1}{4} \int \ln x dx^{4}$$
$$= \frac{x^{4} \ln x}{4} - \frac{1}{4} \int x^{4} d \ln x$$
$$= \frac{x^{4} \ln x}{4} - \frac{1}{4} \int x^{4} \left(\frac{1}{x}\right) dx$$
$$= \frac{x^{4} \ln x}{4} - \frac{1}{4} \int x^{3} dx$$
$$= \frac{x^{4} \ln x}{4} - \frac{x^{4}}{16} + C$$
4.
$$\int \ln x dx = x \ln x - \int x d \ln x$$
$$= x \ln x - \int dx$$
$$= x \ln x - x + C$$

Example

Evaluate the following integrals.

5.
$$\int_0^{\pi} x \sin x \, dx$$

6.
$$\int_0^1 e^{\sqrt{x}} dx$$

Limits Integration Differentiation Techniques o Integration More Technia

Integration Techniques of Integration More Techniques of Integration

Solution

5.
$$\int_0^{\pi} x \sin x \, dx = -\int_0^{\pi} x \, d \cos x$$
$$= -[x \cos x]_0^{\pi} + \int_0^{\pi} \cos x \, dx$$
$$= -(\pi \cos \pi - 0) + [\sin x]_0^{\pi}$$

 $= \pi$

$$6. \int_{0}^{1} e^{\sqrt{x}} dx = 2 \int_{0}^{1} \sqrt{x} e^{\sqrt{x}} d\sqrt{x}$$
$$= 2 \int_{0}^{1} \sqrt{x} de^{\sqrt{x}}$$
$$= 2[\sqrt{x} e^{\sqrt{x}}]_{0}^{1} - 2 \int_{0}^{1} e^{\sqrt{x}} d\sqrt{x}$$
$$= 2e - 2[e^{\sqrt{x}}]_{0}^{1}$$
$$= 2e - 2(e - 1)$$
$$= 2$$

-2

Example

Evaluate the following integrals.

7.
$$\int \sin^{-1} x dx$$

8.
$$\int \ln(1+x^2) dx$$

9.
$$\int \sec^3 x dx$$

10.
$$\int e^x \sin x dx$$

Solution

7.
$$\int \sin^{-1} x dx = x \sin^{-1} x - \int x d \sin^{-1} x$$
$$= x \sin^{-1} x - \int \frac{x dx}{\sqrt{1 - x^2}}$$
$$= x \sin^{-1} x + \frac{1}{2} \int \frac{d(1 - x^2)}{\sqrt{1 - x^2}}$$
$$= x \sin^{-1} x + \sqrt{1 - x^2} + C$$

8.
$$\int \ln(1 + x^2) dx = x \ln(1 + x^2) - \int x d \ln(1 + x^2)$$
$$= x \ln(1 + x^2) - 2 \int \frac{x^2 dx}{1 + x^2}$$
$$= x \ln(1 + x^2) - 2 \int \left(1 - \frac{1}{1 + x^2}\right) dx$$
$$= x \ln(1 + x^2) - 2x + 2 \tan^{-1} x + C$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の < () 289 / 333

Solution

9.
$$\int \sec^3 x dx = \int \sec x d \tan x$$
$$= \sec x \tan x - \int \tan x d \sec x$$
$$= \sec x \tan x - \int \sec x \tan^2 x dx$$
$$= \sec x \tan x - \int \sec x \tan^2 x dx$$
$$= \sec x \tan x - \int \sec x (\sec^2 x - 1) dx$$
$$= \sec x \tan x - \int \sec^3 x dx + \int \sec x dx$$
$$2\int \sec^3 x dx = \sec x \tan x + \int \sec x dx$$
$$\int \sec^3 x dx = \frac{\sec x \tan x + \ln |\sec x + \tan x|}{2} + C$$

Solution

10.
$$\int e^x \sin x dx = \int \sin x de^x$$
$$= e^x \sin x - \int e^x d \sin x$$
$$= e^x \sin x - \int e^x \cos x dx$$
$$= e^x \sin x - \int \cos x de^x$$
$$= e^x \sin x - e^x \cos x + \int e^x d \cos x$$
$$= e^x \sin x - e^x \cos x - \int e^x \sin x dx$$
$$2 \int e^x \sin x dx = e^x \sin x - e^x \cos x + C'$$
$$\int e^x \sin x dx = \frac{1}{2} (e^x \sin x - e^x \cos x) + C$$

Limits Differentiation Integration Integration Techniques of Integration More Techniques of Integration

Reduction formula

Techniques

For integral of the forms

$$I_n = \int \cos^n x dx, \ \int \sin^n x dx, \ \int x^n \cos x dx, \ \int x^n \sin x dx,$$
$$\int \sec^n x dx, \ \int \csc^n x dx, \ \int x^n e^x dx, \ \int (\ln x)^n dx,$$
$$\int e^x \cos^n x dx, \ \int e^x \sin^n x dx, \ \int \frac{dx}{(x^2 + a^2)^n}, \ \int \frac{dx}{(a^2 - x^2)^n},$$

we may use integration by parts to find a formula to express I_n in terms of I_k with k < n. Such a formula is called reduction formula.

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Example

Let

$$I_n = \int x^n \cos x dx$$

for positive integer n. Prove that

$$I_n = x^n \sin x + nx^{n-1} \cos x - n(n-1)I_{n-2}$$
, for $n \ge 2$

Proof.

$$I_n = \int x^n \cos x dx = \int x^n d \sin x$$

$$= x^n \sin x - \int \sin x dx^n$$

$$= x^n \sin x - n \int x^{n-1} \sin x dx$$

$$= x^n \sin x + n \int x^{n-1} d \cos x$$

$$= x^n \sin x + nx^{n-1} \cos x - n \int \cos x dx^{n-1}$$

$$= x^n \sin x + nx^{n-1} \cos x - n(n-1) \int x^{n-2} \cos x dx$$

$$= x^n \sin x + nx^{n-1} \cos x - n(n-1) I_{n-2}$$

Example

Let

$$I_n = \int \frac{dx}{(x^2 + a^2)^n}$$

where a > 0 is a positive real number for positive integer n. Prove that

$$I_n = \frac{x}{2a^2(n-1)(x^2+a^2)^{n-1}} + \frac{2n-3}{2a^2(n-1)}I_{n-1}, \text{ for } n \ge 2$$

Proof

$$I_n = \int \frac{dx}{(x^2 + a^2)^n} = \frac{x}{(x^2 + a^2)^n} - \int xd\left(\frac{1}{(x^2 + a^2)^n}\right)$$

$$= \frac{x}{(x^2 + a^2)^n} + \int \frac{2nx^2dx}{(x^2 + a^2)^{n+1}}$$

$$= \frac{x}{(x^2 + a^2)^n} + 2n\int \frac{(x^2 + a^2 - a^2)dx}{(x^2 + a^2)^{n+1}}$$

$$= \frac{x}{(x^2 + a^2)^n} + 2n\int \frac{dx}{(x^2 + a^2)^n} - 2na^2\int \frac{dx}{(x^2 + a^2)^{n+1}}$$

$$= \frac{x}{(x^2 + a^2)^n} + 2nI_n - 2na^2I_{n+1}$$

$$I_{n+1} = \frac{x}{2na^2(x^2 + a^2)^n} + \frac{2n - 1}{2na^2}I_n$$

Replacing n by n-1, we have

$$I_n = \frac{x}{2(n-1)a^2(x^2+a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2}I_{n-1}.$$

÷

Limits Inter Differentiation Tec Integration More

Integration Techniques of Integration More Techniques of Integration

Alternative proof.

$$I_{n} = \frac{1}{a^{2}} \int \frac{x^{2} + a^{2} - x^{2}}{(x^{2} + a^{2})^{n}} dx$$

$$= \frac{1}{a^{2}} \int \left(\frac{1}{(x^{2} + a^{2})^{n-1}} - \frac{x^{2}}{(x^{2} + a^{2})^{n}}\right) dx$$

$$= \frac{1}{a^{2}} I_{n-1} - \frac{1}{2a^{2}} \int \frac{x}{(x^{2} + a^{2})^{n}} d(x^{2} + a^{2})$$

$$= \frac{1}{a^{2}} I_{n-1} + \frac{1}{2(n-1)a^{2}} \int x d\left(\frac{1}{(x^{2} + a^{2})^{n-1}}\right)$$

$$= \frac{1}{a^{2}} I_{n-1} + \frac{x}{2(n-1)a^{2}(x^{2} + a^{2})^{n-1}} - \frac{1}{2(n-1)a^{2}} \int \frac{dx}{(x^{2} + a^{2})^{n-1}}$$

$$= \frac{x}{2(n-1)a^{2}(x^{2} + a^{2})^{n-1}} + \left(\frac{1}{a^{2}} - \frac{1}{2(n-1)a^{2}}\right) I_{n-1}$$

$$= \frac{x}{2(n-1)a^{2}(x^{2} + a^{2})^{n-1}} + \frac{2n-3}{2(n-1)a^{2}} I_{n-1}$$

297 / 333

Example

Prove the following reduction formula

$$\int \sin^{n} x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

for $n \geq 2$. Hence show that

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \begin{cases} \frac{(n-1) \cdot (n-3) \cdots 6 \cdot 4 \cdot 2}{n \cdot (n-2) \cdots 7 \cdot 5 \cdot 3} & \text{when } n \text{ is odd} \\ \frac{(n-1) \cdot (n-3) \cdots 7 \cdot 5 \cdot 3}{n \cdot (n-2) \cdots 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2} & \text{when } n \text{ is even} \end{cases}$$

Proof

$$\int \sin^{n} x dx = -\int \sin^{n-1} x d \cos x$$

= $-\cos x \sin^{n-1} x + \int \cos x d \sin^{n-1} x$
= $-\cos x \sin^{n-1} x + (n-1) \int \cos^{2} x \sin^{n-2} x dx$
= $-\cos x \sin^{n-1} x + (n-1) \int (1 - \sin^{2} x) \sin^{n-2} x dx$
 $n \int \sin^{n} x dx = -\cos x \sin^{n-1} x + (n-1) \int \sin^{n-2} x dx$
 $\int \sin^{n} x dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x dx$

Proof

Hence when n is odd

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = -\left[\frac{1}{n}\cos x \sin^{n-1} x\right]_{0}^{\frac{\pi}{2}} + \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x dx$$
$$= \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x dx$$
$$= \left(\frac{n-1}{n}\right) \left(\frac{n-3}{n-2}\right) \int_{0}^{\frac{\pi}{2}} \sin^{n-4} x dx$$
$$\vdots$$
$$= \frac{(n-1) \cdot (n-3) \cdots 6 \cdot 4 \cdot 2}{n \cdot (n-2) \cdots 7 \cdot 5 \cdot 3} \int_{0}^{\frac{\pi}{2}} \sin x dx$$
$$= \frac{(n-1) \cdot (n-3) \cdots 6 \cdot 4 \cdot 2}{n \cdot (n-2) \cdots 7 \cdot 5 \cdot 3}$$

Proof.

when n is even

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = -\left[\frac{1}{n} \cos x \sin^{n-1} x\right]_{0}^{\frac{\pi}{2}} + \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x dx$$

$$= \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x dx$$

$$= \left(\frac{n-1}{n}\right) \left(\frac{n-3}{n-2}\right) \int_{0}^{\frac{\pi}{2}} \sin^{n-4} x dx$$

$$\vdots$$

$$= \frac{(n-1) \cdot (n-3) \cdots 7 \cdot 5 \cdot 3}{n \cdot (n-2) \cdots 6 \cdot 4 \cdot 2} \int_{0}^{\frac{\pi}{2}} dx$$

$$= \frac{(n-1) \cdot (n-3) \cdots 7 \cdot 5 \cdot 3}{n \cdot (n-2) \cdots 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2}$$

Limits Integration Techniques of Integration More Techniques of Integration Differentiation Integration

Example

$$\begin{split} I_n &= \int x^n e^x dx; \qquad I_n = x^n e^x - nI_{n-1}, \ n \ge 1 \\ I_n &= \int (\ln x)^n dx; \qquad I_n = x(\ln x)^n - nI_{n-1}, \ n \ge 1 \\ I_n &= \int x^n \sin x dx; \qquad I_n = -x^n \cos x + nx^{n-1} \sin x - n(n-1)I_{n-2}, \ n \ge 2 \\ I_n &= \int \cos^n x dx; \qquad I_n = \frac{\cos^{n-1} x \sin x}{n} + (n-1)I_{n-2}, \ n \ge 2 \\ I_n &= \int \sec^n x dx; \qquad I_n = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1}I_{n-2}, \ n \ge 2 \\ I_n &= \int e^x \cos^n x dx; \qquad I_n = \frac{e^x \cos^{n-1} x(\cos x + n \sin x)}{n^2 + 1} + \frac{n(n-1)}{n^2 + 1}I_{n-2}, \ n \ge 2 \\ I_n &= \int e^x \sin^n x dx; \qquad I_n = \frac{e^x \sin^{n-1} x(\sin x - n \cos x)}{n^2 + 1} + \frac{n(n-1)}{n^2 + 1}I_{n-2}, \ n \ge 2 \\ I_n &= \int x^n \sqrt{x + a} dx; \qquad I_n = \frac{2x^n (x + a)^{\frac{3}{2}}}{2n + 3} - \frac{2na}{2n + 3}I_{n-1}, \ n \ge 1 \\ I_n &= \int \frac{x^n}{\sqrt{x + a}} dx; \qquad I_n = \frac{2x^n \sqrt{x + a}}{2n + 1} - \frac{2na}{2n + 1}I_{n-1}, \ n \ge 1 \end{split}$$

302 / 333

Limits Integration Mo

Integration Techniques of Integration More Techniques of Integration

Trigonometric substitution

Techniques (Trigonometric substitution)

Expression	Substitution	dx	Trigonometric ratios
$\sqrt{a^2 - x^2}$	$x = a \sin \theta$	$dx = a\cos\theta d\theta$	$\begin{array}{c} a \\ \theta \\ \hline \sqrt{a^2 - x^2} \end{array} x \\ cos \theta = \frac{\sqrt{a^2 - x^2}}{a} \\ sin \theta = \frac{x}{a} \\ tan \theta = \frac{x}{\sqrt{a^2 - x^2}} \end{array}$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$dx = a \sec^2 \theta d\theta$	$\begin{array}{c} \cos\theta = \frac{a}{\sqrt{a^2 + x^2}} \\ x \\ \theta \\ a \end{array} x \\ \tan\theta = \frac{x}{a} \end{array}$
$\sqrt{x^2 - a^2}$	$x = a \sec \theta$	$dx = a \sec \theta \tan \theta d\theta$	$\begin{array}{c} \cos\theta = \frac{a}{x} \\ \sqrt{x^2 - a^2} & \sin\theta = \frac{\sqrt{x^2 - a^2}}{x} \\ \theta \\ a \\ \tan\theta = \frac{\sqrt{x^2 - a^2}}{a} \end{array}$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Theorem

1
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C$$

2 $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$
3 $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \cos^{-1} \frac{a}{x} + C$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > 304 / 333

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Proof

1. Let $x = a \sin \theta$. Then

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = a \cos \theta$$
$$dx = a \cos \theta d\theta$$

Therefore

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \int \frac{1}{a \cos \theta} (a \cos \theta d\theta)$$
$$= \int d\theta$$
$$= \theta + C$$
$$= \sin^{-1} \frac{x}{a} + C$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Proof

2. Let $x = a \tan \theta$. Then

$$a^{2} + x^{2} = a^{2} + a^{2} \tan^{2} \theta = a^{2} \sec^{2} \theta$$
$$dx = a \sec^{2} \theta d\theta.$$

Therefore

$$\int \frac{1}{a^2 + x^2} dx = \int \frac{1}{a^2 \sec^2 \theta} (a \sec^2 \theta d\theta)$$
$$= \frac{1}{a} \int d\theta$$
$$= \frac{\theta}{a} + C$$
$$= \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

Proof.

3. Let
$$x = a \sec \theta$$
. Then

$$x\sqrt{x^2 - a^2} = a \sec \theta \sqrt{a^2 \sec^2 \theta - a^2} = a^2 \sec \theta \tan \theta$$
$$dx = a \sec \theta \tan \theta d\theta.$$

Therefore

$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \int \frac{1}{a^2 \sec \theta \tan \theta} (a \sec \theta \tan \theta d\theta)$$
$$= \frac{1}{a} \int d\theta$$
$$= \frac{\theta}{a} + C$$
$$= \frac{1}{a} \cos^{-1} \frac{a}{x} + C$$
Note that $\theta = \cos^{-1} \frac{a}{x}$ since $\cos \theta = \frac{1}{\sec \theta} = \frac{a}{x}$.

307 / 333

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Example

Use trigonometric substitution to evaluate the following integrals.

$$\int \sqrt{1-x^2} \, dx$$

$$\int \frac{1}{\sqrt{1+x^2}} \, dx$$

$$\int \frac{x^3}{\sqrt{4-x^2}} \, dx$$

$$\int \frac{1}{(9+x^2)^2} \, dx$$

Solution

1. Let $x = \sin \theta$. Then

$$\sqrt{1-x^2} = \sqrt{1-\sin^2\theta} = \cos\theta$$
$$dx = \cos\theta d\theta.$$

Therefore

$$\int \sqrt{1 - x^2} \, dx = \int \cos^2 \theta \, d\theta$$
$$= \int \frac{\cos 2\theta + 1}{2} \, d\theta$$
$$= \frac{\sin 2\theta}{4} + \frac{\theta}{2} + C$$
$$= \frac{\sin \theta \cos \theta}{2} + \frac{\sin^{-1} x}{2} + C$$
$$= \frac{x\sqrt{1 - x^2}}{2} + \frac{\sin^{-1} x}{2} + C$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

2. Let $x = \tan \theta$. Then

$$1 + x^{2} = 1 + \tan^{2} \theta = \sec^{2} \theta$$
$$dx = \sec^{2} \theta d\theta.$$

Therefore

$$\int \frac{1}{\sqrt{1+x^2}} dx = \int \frac{1}{\sec x} (\sec^2 \theta d\theta)$$
$$= \int \sec \theta d\theta$$
$$= \ln |\tan \theta + \sec \theta| + C$$
$$= \ln(x + \sqrt{1+x^2}) + C$$

Solution

3. Let $x = 2\sin\theta$. Then

$$\sqrt{4 - x^2} = \sqrt{4 - 4\sin^2\theta} = 2\cos\theta$$
$$dx = 2\cos\theta d\theta.$$

Therefore

$$\int \frac{x^3}{\sqrt{4-x^2}} dx = \int \frac{8\sin^3\theta}{2\cos\theta} (2\cos\theta d\theta)$$
$$= 8\int \sin^3\theta d\theta$$
$$= -8\int (1-\cos^2\theta) d\cos\theta$$
$$= 8\left(\frac{\cos^3\theta}{3} - \cos\theta\right) + C$$
$$= \frac{(4-x^2)^{\frac{3}{2}}}{3} - 4(4-x^2)^{\frac{1}{2}} + C$$

Solution

4. Let $x = 3 \tan \theta$. Then

$$9 + x^{2} = 9 + 9 \tan^{2} \theta = 9 \sec^{2} \theta$$
$$dx = 3 \sec^{2} \theta d\theta.$$

Therefore

$$\int \frac{1}{(9+x^2)^2} dx = \int \frac{1}{81 \sec^4 \theta} (3 \sec^2 \theta d\theta) = \frac{1}{27} \int \cos^2 \theta d\theta$$
$$= \frac{1}{54} \int (\cos 2\theta + 1) d\theta = \frac{1}{54} \left(\frac{\sin 2\theta}{2} + \theta \right) + C$$
$$= \frac{1}{54} (\cos \theta \sin \theta + \theta) + C$$
$$= \frac{1}{54} \left(\frac{3}{\sqrt{9+x^2}} \cdot \frac{x}{\sqrt{9+x^2}} + \tan^{-1} \frac{x}{3} \right) + C$$
$$= \frac{x}{18(9+x^2)} + \frac{1}{54} \tan^{-1} \frac{x}{3} + C$$

Integration of rational functions

Definition (Rational functions)

A rational function is a function of the form

$$R(x) = \frac{f(x)}{g(x)}$$

where f(x), g(x) are polynomials with real coefficients with $g(x) \neq 0$.

Techniques

We can integrate a rational function R(x) with the following two steps.

① Find the partial fraction decomposition of R(x), that is, express

$$R(x) = q(x) + \sum \frac{A}{(x-\alpha)^k} + \sum \frac{B(x+a)}{((x+a)^2 + b^2)^k} + \sum \frac{C}{((x+a)^2 + b^2)^k} + \sum \frac{C}{((x+a)^2 + b^2)^k} + \sum \frac{C}{(x+a)^2 + b^2} + \sum \frac$$

where q(x) is a polynomial, A, B, C, α, a, b represent real numbers and k represents positive integer.

2 Integrate the partial fraction.

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Theorem

Let $R(x) = \frac{f(x)}{g(x)}$ be a rational function. We may assume that the leading coefficient of g(x) is 1.

(Division algorithm for polynomials) There exists polynomials q(x), r(x) with $\deg(r(x)) < \deg(g(x))$ or r(x) = 0 such that

$$R(x) = q(x) + \frac{r(x)}{g(x)}.$$

q(x) and r(x) are the quotient and remainder of the division f(x) by g(x).

(Fundamental theorem of algebra for real polynomials) g(x) can be written as a product of linear or quadratic polynomials. More precisely, there exists real numbers α₁,..., α_m, a₁,..., a_n, b₁,..., b_n and positive integers k₁,..., k_m, l₁,..., l_n such that

$$g(x) = (x - \alpha_1)^{k_1} \cdots (x - \alpha_k)^{k_m} ((x + a_1)^2 + b_1^2)^{l_1} \cdots ((x + a_n)^2 + b)_n^2)^{l_n}.$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Techniques

Partial fractions can be integrated using the formulas below.

•
$$\int \frac{dx}{(x-\alpha)^k} = \begin{cases} \ln|x-\alpha| + C, & \text{if } k = 1\\ -\frac{1}{(k-1)(x-\alpha)^{k-1}} + C, & \text{if } k > 1 \end{cases}$$
•
$$\int \frac{xdx}{(x^2+a^2)^k} = \begin{cases} \frac{1}{2}\ln(x^2+a^2) + C, & \text{if } k = 1\\ -\frac{1}{2(k-1)(x^2+a^2)^{k-1}} + C, & \text{if } k > 1 \end{cases}$$
•
$$\int \frac{dx}{(x^2+a^2)^k}$$

$$= \begin{cases} \frac{1}{a}\tan^{-1}\frac{x}{a} + C, & \text{if } k = 1\\ \frac{x}{2a^2(k-1)(x^2+a^2)^{k-1}} + \frac{2k-3}{2a^2(k-1)} \int \frac{dx}{(x^2+a^2)^{k-1}}, & \text{if } k > 1 \end{cases}$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Theorem

Suppose $\frac{f(x)}{g(x)}$ is a rational function such that the degree of f(x) is smaller than the degree of g(x) and g(x) has only simple real roots, i.e.,

$$g(x) = a(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_k)$$

for distinct real numbers $\alpha_1, \alpha_2, \cdots, \alpha_k$ and $a \neq 0$. Then

$$\frac{f(x)}{g(x)} = \frac{f(\alpha_1)}{g'(\alpha_1)(x-\alpha_1)} + \frac{f(\alpha_2)}{g'(\alpha_2)(x-\alpha_2)} + \dots + \frac{f(\alpha_k)}{g'(\alpha_k)(x-\alpha_k)}$$

Proof

First, observe that

$$g'(x) = \sum_{j=1}^{k} a(x - \alpha_1)(x - \alpha_2) \cdots (\widehat{x - \alpha_j}) \cdots (x - \alpha_k)$$

where $(\widehat{x-\alpha_i})$ means the factor $x-\alpha_i$ is omitted. Thus we have

$$g'(\alpha_i) = \sum_{j=1}^k a(\alpha_i - \alpha_1)(\alpha_i - \alpha_2) \cdots (\widehat{\alpha_i - \alpha_j}) \cdots (\alpha_i - \alpha_k)$$
$$= a(\alpha_i - \alpha_1)(\alpha_i - \alpha_2) \cdots (\widehat{\alpha_i - \alpha_i}) \cdots (\alpha_i - \alpha_k)$$

Since g(x) has distinct real zeros, the partial fraction decomposition takes the form

$$\frac{f(x)}{g(x)} = \frac{A_1}{x - \alpha_1} + \frac{A_2}{x - \alpha_2} + \dots + \frac{A_k}{x - \alpha_k}$$

< □ > < □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > 317/333

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Proof.

Multiplying both sides by $g(x) = a(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_k)$, we get

$$f(x) = \sum_{i=1}^{k} A_i a(x - \alpha_1)(x - \alpha_2) \cdots (\widehat{x - \alpha_i}) \cdots (x - \alpha_k)$$

For $i=1,2,\cdots,k$, substituting $x=\alpha_i$, we obtain

$$f(\alpha_i) = \sum_{j=1}^k A_j a(\alpha_j - \alpha_1)(\alpha_j - \alpha_2) \cdots (\widehat{\alpha_j - \alpha_i}) \cdots (\alpha_j - \alpha_k)$$

= $A_i a(\alpha_i - \alpha_1)(\alpha_i - \alpha_2) \cdots (\widehat{\alpha_i - \alpha_i}) \cdots (\alpha_i - \alpha_k)$
= $A_i g'(\alpha_i)$

and the result follows.

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Example

Evaluate the following integrals.

$$\int \frac{x^5 + 2x - 1}{x^3 - x} dx$$

$$\int \frac{9x - 2}{2x^3 + 3x^2 - 2x} dx$$

$$\int \frac{x^2 - 2}{x(x - 1)^2} dx$$

$$\int \frac{x^2}{x^4 - 1} dx$$

$$\int \frac{8x^2}{x^4 + 4} dx$$

$$\int \frac{2x + 1}{x^4 + 2x^2 + 1} dx$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

1. By division and factorization $x^3 - x = x(x - 1)(x + 1)$, we obtain the partial fraction decomposition

$$\frac{x^5 + 4x - 3}{x^3 - x} = x^2 + 1 + \frac{5x - 3}{x^3 - x} = x^2 + 1 + \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}$$

Multiply both sides by x(x-1)(x+1) and obtain

$$5x - 3 = A(x - 1)(x + 1) + Bx(x + 1) + Cx(x - 1)$$

⇒ $A = 3, B = 1, C = -4.$

Therefore

$$\int \frac{x^5 + 4x - 3}{x^3 - x} \, dx = \int \left(x^2 + 1 + \frac{3}{x} + \frac{1}{x - 1} - \frac{4}{x + 1} \right) dx$$
$$= \frac{x^3}{3} + x + 3\ln|x| + \ln|x - 1| - 4\ln|x + 1| + C.$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

2. By factorization $2x^3 + 3x^2 - 2x = x(x+2)(2x-1)$, we obtain the partial fraction decomposition

$$\frac{9x-2}{2x^3+3x^2-2x} = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{2x-1}$$

Multiply both sides by x(x+2)(2x-1) and obtain

$$9x - 2 = A(x + 2)(2x - 1) + Bx(2x - 1) + Cx(x + 2)$$

$$\Rightarrow A = 1, B = -2, C = 2.$$

Therefore

$$\int \frac{9x-2}{2x^3+3x^2-2x} dx$$

= $\int \left(\frac{1}{x} - \frac{2}{x+2} + \frac{2}{2x-1}\right) dx$
= $\ln|x| - 2\ln|x+2| + \ln|2x-1| + C.$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

3. The partial fraction decomposition is

=

$$\frac{x^2 - 2}{x(x-1)^2} = \frac{A}{(x-1)^2} + \frac{B}{x-1} + \frac{C}{x}.$$

Multiply both sides by $x(x-1)^2$ and obtain

$$x^{2} - 2 = Ax + Bx(x - 1) + C(x - 1)^{2}$$

 $\Rightarrow A = -1, B = 3, C = -2.$

Therefore

$$\int \frac{x^2 - 2}{x(x-1)^2} dx = \int \left(-\frac{1}{(x-1)^2} + \frac{3}{x-1} - \frac{2}{x} \right) dx$$
$$= \frac{1}{x-1} + 3\ln|x-1| - 2\ln|x| + C.$$

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ 322 / 333

Solution

4. The partial fraction decomposition is

x

$$\frac{x^2}{(x^2-1)(x^2+1)} = \frac{x^2}{(x^2-1)(x^2+1)}$$
$$= \frac{1}{2}\left(\frac{1}{x^2-1} + \frac{1}{x^2+1}\right)$$
$$= \frac{1}{2(x-1)(x+1)} + \frac{1}{2(x^2+1)}$$
$$= \frac{1}{4(x-1)} - \frac{1}{4(x+1)} + \frac{1}{2(x^2+1)}$$

Therefore

$$\int \frac{x^2 dx}{x^4 - 1} = \int \left(\frac{1}{4(x - 1)} - \frac{1}{4(x + 1)} + \frac{1}{2(x^2 + 1)}\right) dx$$
$$= \frac{1}{4} \ln|x - 1| - \frac{1}{4} \ln|x + 1| + \frac{1}{2} \tan^{-1} x + C$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

5. By factorization $x^4 + 4 = (x^2 + 2)^2 - (2x)^2 = (x^2 - 2x + 2)(x^2 + 2x + 2)$,

$$\begin{aligned} &\int \frac{8x^2}{x^4 + 4} \, dx \\ &= \int \frac{8x^2 dx}{(x^2 - 2x + 2)(x^2 + 2x + 2)} \, dx \\ &= \int 2x \left(\frac{4x}{(x^2 - 2x + 2)(x^2 + 2x + 2)}\right) dx \\ &= \int 2x \left(\frac{1}{x^2 - 2x + 2} - \frac{1}{x^2 + 2x + 2}\right) dx \\ &= \int \left(\frac{2x}{(x - 1)^2 + 1} - \frac{2x}{(x + 1)^2 + 1}\right) dx \\ &= \int \left(\frac{2(x - 1)}{(x - 1)^2 + 1} + \frac{2}{(x - 1)^2 + 1} - \frac{2(x + 1)}{(x + 1)^2 + 1} + \frac{2}{(x + 1)^2 + 1}\right) dx \\ &= \ln(x^2 - 2x + 2) + 2\tan^{-1}(x - 1) - \ln(x^2 + 2x + 2) + 2\tan^{-1}(x + 1) + C \end{aligned}$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

$$\begin{aligned} 6. \qquad \int \frac{2x+1}{x^4+2x^2+1} \, dx \\ &= \int \frac{2xdx}{(x^2+1)^2} + \int \frac{dx}{(x^2+1)^2} \\ &= \int \frac{d(x^2+1)}{(x^2+1)^2} + \int \frac{x^2+1}{(x^2+1)^2} \, dx - \int \frac{x^2dx}{(x^2+1)^2} \\ &= -\frac{1}{x^2+1} + \int \frac{dx}{x^2+1} - \frac{1}{2} \int \frac{xd(x^2+1)}{(x^2+1)^2} \\ &= -\frac{1}{x^2+1} + \tan^{-1}x + \frac{1}{2} \int xd\left(\frac{1}{x^2+1}\right) \\ &= -\frac{1}{x^2+1} + \tan^{-1}x + \frac{1}{2}\left(\frac{x}{x^2+1}\right) - \frac{1}{2} \int \frac{dx}{x^2+1} \\ &= \frac{x-2}{2(x^2+1)} + \frac{1}{2} \tan^{-1}x + C \end{aligned}$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

Example

Find the partial fraction decomposition of the following functions.

1
$$\frac{5x-3}{x^3-x}$$

2 $\frac{9x-2}{2x^3+3x^2-2x}$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

1 For
$$g(x) = x^3 - x = x(x-1)(x+1)$$
, $g'(x) = 3x^2 - 1$. Therefore

$$\frac{5x-3}{x^3-x} = \frac{-3}{g'(0)x} + \frac{5(1)-3}{g'(1)(x-1)} + \frac{5(-1)-3}{g'(-1)(x+1)}$$
$$= \frac{3}{x} + \frac{1}{x-1} - \frac{4}{x+1}$$

2 For $g(x) = 2x^3 + 3x^2 - 2x = x(x+2)(2x-1)$, $g'(x) = 6x^2 + 6x - 2$. Therefore

$$\frac{9x-2}{2x^3+3x^2-2x} = \frac{-2}{g'(0)x} + \frac{9(-2)-2}{g'(-2)(x+2)} + \frac{9(\frac{1}{2})-2}{g'(\frac{1}{2})(2x-1)} = \frac{1}{x} - \frac{2}{x+2} + \frac{2}{2x-1}$$

≣ ∽ ९ ୯ 327 / 333

 \square

・ロト ・回ト ・ヨト ・ヨト

t-substitution

Techniques

To evaluate

 $\int R(\cos x, \sin x, \tan x) dx$

where R is a rational function, we may use t-substitution

$$t = \tan \frac{x}{2}$$

Then

$$\tan x = \frac{2t}{1-t^2}; \ \cos x = \frac{1-t^2}{1+t^2}; \ \sin x = \frac{2t}{1+t^2};$$
$$dx = d(2\tan^{-1}t) = \frac{2dt}{1+t^2}.$$

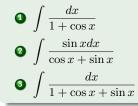
We have

$$\int R(\cos x, \sin x, \tan x) dx = \int R\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}, \frac{2t}{1-t^2}\right) \frac{2dt}{1+t^2}$$

which is an integral of rational function.

Example

Use *t*-substitution to evaluate the following integrals.



Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

1. Let
$$t = \tan \frac{x}{2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$, $dx = \frac{2dt}{1+t^2}$. We have

$$\int \frac{dx}{1+\cos x} = \int \left(\frac{1}{1+\frac{1-t^2}{1+t^2}}\right) \frac{2dt}{1+t^2} = \int dt = t + C = \tan \frac{x}{2} + C$$

$$= \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} + C = \frac{2\cos \frac{x}{2}\sin \frac{x}{2}}{2\cos^2 \frac{x}{2}} + C = \frac{\sin x}{1+\cos x} + C$$

Alternatively

$$\int \frac{dx}{1 + \cos x} = \int \frac{dx}{2\cos^2 \frac{x}{2}} = \frac{1}{2} \int \sec^2 \frac{x}{2} dx$$
$$= \tan \frac{x}{2} + C = \frac{\sin x}{1 + \cos x} + C$$

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

2. Let
$$t = \tan \frac{x}{2}$$
, $\cos x = \frac{1 - t^2}{1 + t^2}$, $\sin x = \frac{2t}{1 + t^2}$, $dx = \frac{2dt}{1 + t^2}$. We have

$$\int \frac{\sin x dx}{\cos x + \sin x} = \int \frac{\frac{2t}{1+t^2}}{\frac{1-t^2}{1+t^2} + \frac{2t}{1+t^2}} \frac{2dt}{1+t^2}$$

$$= \int \left(\frac{1}{1+t^2} + \frac{t}{1+t^2} + \frac{t-1}{1+2t-t^2}\right) dt$$

$$= \tan^{-1}t + \frac{1}{2}\ln|1+t^2| - \frac{1}{2}\ln|1+2t-t^2| + C$$

$$= \tan^{-1}t - \frac{1}{2}\ln\left|\frac{1+2t-t^2}{1+t^2}\right| + C$$

$$= \tan^{-1}t - \frac{1}{2}\ln\left|\frac{1-t^2}{1+t^2} + \frac{2t}{1+t^2}\right| + C$$

$$= \frac{x}{2} - \frac{1}{2}\ln|\cos x + \sin x| + C$$

Solution

Alternatively

$$\int \frac{\sin x dx}{\cos x + \sin x} = \frac{1}{2} \int \left(1 - \frac{\cos x - \sin x}{\cos x + \sin x} \right) dx$$
$$= \frac{x}{2} - \frac{1}{2} \int \frac{d(\sin x + \cos x)}{\cos x + \sin x}$$
$$= \frac{x}{2} - \frac{1}{2} \ln |\cos x + \sin x| + C$$

4回 > 4回 > 4回 > 4回 > 4回 > 4回 > 332/333

Limits	Integration
Differentiation	Techniques of Integration
Integration	More Techniques of Integration

3. Let
$$t = \tan \frac{x}{2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$, $dx = \frac{2dt}{1+t^2}$. We have

$$\int \frac{dx}{1+\cos x + \sin x} = \int \frac{\frac{2dt}{1+t^2}}{1+\frac{1-t^2}{1+t^2} + \frac{2t}{1+t^2}}$$

$$= \int \frac{dt}{1+t}$$

$$= \ln|1+t| + C$$

$$= \ln|1+\tan \frac{x}{2}| + C$$

$$= \ln\left|1+\frac{\sin x}{1+\cos x}\right| + C$$

$$= \ln\left|\frac{1+\cos x + \sin x}{1+\cos x}\right| + C$$