Lecture 7

4 Entropy

In 1958, Kolomogrov introduced the notion of entropy in ergodic theory. The
entropy of a measure-preserving transformation 7 is defined is three stages: the
entropy of a finite partition, the entropy of T relative to a finite partition and
the entropy of T

4.1 Entropy of finite partitions

Let (X, %, m) be a probability space.

Definition 4.1 (Partition). A partition of X is a family of elements in B which
are disjoint and the union of them is X.

For instance, 4 = {0, X} is a partition, called the trivial partition.

Definition 4.2 (Entropy of a finite partition). Let & = {41, - ,A,} be a
partition of X. Define the entropy of £ by

H(E) = — Z m(A;) logm(4;) = Z p(m(4;)),

where ¢(z) = —xlogzx for x € (0,1] and $(0) := 0.

To study the properties of entropy, we will use the following two simple
lemmas, which can be proved by elementary calculus.

Lemma 4.1. The function ¢ : x — —zlogx is strictly concave on (0,1).

Lemma 4.2 (Jensen’s inequality). Let a1, -+ ,a, € [0,1] with > . a; = 1.
Let z1,--- ,x, €[0,1]. Then

D aid(@) < o) aiw).
i=1 =1

oreover. = olds 1 Tr; = I whenever a;,a; .
M . =" hold ; wh La; #0

In the following, we will use symbols “=, <, C” to denote the ignorance of
sets of measure 0. For instance, £ = 7 iff for any element A € ¢, there is an
element B € 7, such that m(A A B) =0 and vise versa.

Lemma 4.3. Let £ = {Ay,---,A,} be a partition of X. Then 0 < H(&) <
logn. Moreover, H(§) = 0 iff £ = {0, X} and H(§) = logn iff m(A;) = * for
all i.
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Proof. Since ¢ is nonnegative on [0, 1] and attains 0 only when 2 =0 or z = 1,
H() > 0. If HE) = 0, then for each i, m(A;) = 0 or m(A4;) = 1, hence
£={0,X}. In Lemma 4.2, put a; = = for all i, we have

m(Ay) +---+m(A,), 1. logn

hence H(§) <logn and “=" holds iff m(4;) = L for all i. O

Definition 4.3. Let £ = {Ay,--- , An} andn={B1, -+, Bi} be two partitions
of X. The join of & and n is defined as

Evn={A,NB;:1<i<n1<j<k}.

Notice that £ V7 is a new partition, it is finer than £ and 7 in the sense that
any A; or B; is a union of elements in £ V 7.

Definition 4.4 (Refinement of a partition). Given two finite partitions £ and
n, write £ < n if any element of £ is a union of elements of n and say n is a
refinement of €.

4.2 Conditional entropy

Definition 4.5 (Conditional entropy). Let{ = {4y, -, A,} andn = {B1, -, By}
be two partitions of X. Define

H(gln) = Z Z¢ A”B)>.

Intuitively, entropy (conditional entropy) measures the average uncertainty
of determining the location of a typical point in X (if its location in another
partition is known). It is helpful to think in this way in the following theorems.

Proposition 4.1. Let £ and n be two finite partitions of X. Then

(i) 0 < H(&n) < H(E).

(ii) H(|n) = 0 < £<n.

(i) H(n) = H(E) < € and n are independent in the sense that m(A; N
Bj) = m(A;)m(B;) for A; €&, B; €.

Proof. (i) H(&|n) > 0 is obvious. Furthermore,
A ﬂB m(A; N B,
H(¢ln) = Zm Z¢ sz (BJ)))
< S o(SmE) ™) = S otmtan = HE)
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(ii) Suppose H(&|n) = 0. Then for any 4,7, we have m(Bj)gb(M) = 0.

m(B;)
If m(B;) > 0, then % =0 or 1, since ) ., Mrf("igf)j) = 1, there exists

a unique ¢ such that % = 1 and m(A; N B;j) = 0 for any other 4, hence
£<n. Conversely, if £€<n, the for any i,j, if m(A4; N Bj) # 0, then BjéAi,

o) %};‘gﬁ = 1, hence every term in the summation of H(£|n) is 0, that is

H(E[n) = 0.
(iii) “«<=” is obvious. If H({|n) = H (), then for each i,

(A; N Bj) m(A; N B
S mE)o(™ ) = oSz "),

hence %gﬁj) is constant for those j with m(B;) > 0. Write ¢; = m(rrlzq(iilgf)ﬂ
for j with m(B;) > 0, then
mA)= > mA4NB)= > mB)t=t.
j:m(B;)>0 jm(B;)>0
This completes the proof. O

Theorem 4.4. Let &, n and vy be finite partitions of X. Then
(i) H(EV n) = H(§) + H(nl§).
(i) More generally, H(§ V nly) = H(E|y) + H(nl¢ vV 7).

Proof. Notice that (i) follows from (ii) by replacing v by {0, X}, so it suffices
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to prove (ii). Let £ = {4;};, n = {B;}; and v = {Ci}x. Then

H(eVnly) = Zka ZZ¢ m(A; N B, )ﬂck))
_ A N B; ﬂCk) m(AiﬂBjﬂCk)
_—Zm Ck Z m(C’k) log m(ck)
m(Al ﬂBj ﬂCk)
m(AiﬂBjﬂCk) o m(AiﬁCk)]
m(A; N Cr) & m(Cr)

m(A; N B; N Cy)
m(Ai n Ck)

=- Zm(Al N B; NCy)log
04,k

= —Zm(AiﬁBj N Cy)|log

i,4,k
= 7Zm(AimBj ﬁC’k) 10g — Zm(A, ﬂBj ﬂC’k) log
i,5,k .5,k
m(A;NB;NCy), m(A;NB;NCy)
= — (A; N Cy) 1
Z 2 m(A; N Cy) o8 m(A; N Cy)

m(A; N Cy)
m(Ck)

m(A; N Cy)
m(Ck)

- Z m(A; N Cy) log

1,7,k

m(A; N B; N Cy) m(A; N B; N Ck)
;m mc")zj: m(AinCy) 8 m(A;NCy)

A ﬂCk) m(Al ﬁCk)
_Zm C) Z m(Ck) g m(Cy)

_ZmAkaZ¢> A/Tigkc’“ +Zm0k2¢> Amc’“)

( [EV ) +H(£|7)'

Corollary 4.4.1. H((Vn) < H(E) + H(n).
Proof. By the above theorem, H(EVn) = H()+ H(n|¢) < H() + H(n). U

Theorem 4.5. Assume n <-~y. Then H(E|vy) < H(&|n).
Proof. Since n < ~y, we have v =nV . Hence

m(A; C
H(lv)=H(Envy) = ZMBFWLZ¢ ;ﬁ&fh

B ﬂO m(A; ﬂB-ﬂO-)
_Zm ZZ k m(BjﬂCk)k )}
R mj>k) S

= Y3 o A“B)—H@\n).
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4.3 Entropy of T

First we define the entropy of a measure-preserving transformation 7" w.r.t a
partition &.

Definition 4.6. Let (X, %,m,T) be a MPS. Let £ = {A1, - ,Ax} be a a
partition of X. Define

n—1
1 —1
W(T,€) = lim —H( \/OT 3}

where T~i¢ == {T" Ay, -\ T Ay} and \/I =) T~i€ =€\ T e\ .-\ T~ ("= Vg
We call h(T, ) the entropy of T w.r.t &.

The existence of the above limit is guaranteed as follows.
Lemma 4.6. H(T~'¢) = H(¢).
Proof. Tt just follows from that T preserves m. O
Lemma 4.7. H(V 2" T7¢) < H(V;Z) T + H(V[Z,' T7'¢).
Proof. Notice that

nt+m—1 n+m—1 n—1 m—1
H(\/ T \/ T-ie\/ \/ = H( \/ AV S QVA a3)
=0 3 =0

n—1 m—1

\/ T-%) +H(T \/ 7)) =H(\/ T +H(\] T7%).
i=0 1=0

=

This lemma shows that {H (\/?;01 T=€)}, is a subadditive sequence. Then
the limit in Definition 4.6 exists by the following lemma.

Lemma 4.8. Let {a,} be a sequence of real numbers. If anym < apn + ap, for
any n,m € N, then
. Gnp . 0p
lim — =inf —.
n—oo n n n
Proof. Fix m > 1. For n € N, there exist ¢ and [ such that n = mq + [, with
g€ Nand 0 <!l < m. Then

al o Amg+1 < Amg +a < (£2%%) ajp

n mqg+l~ mg m  mq’

letting n — oo, then g — oo, we have lim,,_,o fn < @m. Since m is arbitrary,

we have lim,,_, o @ < inf, S». Since inf, %* < hmn oo 7, We complete the

proof. Notice that the limit may be —oo. O
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Now we define the entropy of a measure-preserving transformation.

Definition 4.7 (Entropy of T'). Let (X, %2, m,T) be MPS. Define

BT) = sup A(T,€).
£ finite
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