Lecture 7

4 Entropy

In 1958, Kolomogrov introduced the notion of entropy in ergodic theory. The entropy of a measure-preserving transformation T is defined is three stages: the entropy of a finite partition, the entropy of T relative to a finite partition and the entropy of T.

4.1 Entropy of finite partitions

Let (X, \mathcal{B}, m) be a probability space.

Definition 4.1 (Partition). A partition of X is a family of elements in \mathcal{B} which are disjoint and the union of them is X.

For instance, $\mathcal{N} = \{\emptyset, X\}$ is a partition, called the trivial partition.

Definition 4.2 (Entropy of a finite partition). Let $\xi = \{A_1, \dots, A_n\}$ be a partition of X. Define the entropy of ξ by

$$H(\xi) := -\sum_{i=1}^{n} m(A_i) \log m(A_i) = \sum_{i=1}^{n} \phi(m(A_i)),$$

where $\phi(x) := -x \log x \text{ for } x \in (0, 1] \text{ and } \phi(0) := 0.$

To study the properties of entropy, we will use the following two simple lemmas, which can be proved by elementary calculus.

Lemma 4.1. The function $\phi: x \mapsto -x \log x$ is strictly concave on (0,1).

Lemma 4.2 (Jensen's inequality). Let $a_1, \dots, a_n \in [0,1]$ with $\sum_{i=1}^n a_i = 1$. Let $x_1, \dots, x_n \in [0,1]$. Then

$$\sum_{i=1}^{n} a_i \phi(x_i) \le \phi(\sum_{i=1}^{n} a_i x_i).$$

Moreover, "=" holds iff $x_i = x_j$ whenever $a_i, a_j \neq 0$.

In the following, we will use symbols " $\stackrel{\circ}{=}$, $\stackrel{\circ}{\leq}$, $\stackrel{\circ}{\subseteq}$ " to denote the ignorance of sets of measure 0. For instance, $\xi \stackrel{\circ}{=} \eta$ iff for any element $A \in \xi$, there is an element $B \in \eta$, such that $m(A \triangle B) = 0$ and vise versa.

Lemma 4.3. Let $\xi = \{A_1, \dots, A_n\}$ be a partition of X. Then $0 \le H(\xi) \le \log n$. Moreover, $H(\xi) = 0$ iff $\xi = \{\emptyset, X\}$ and $H(\xi) = \log n$ iff $m(A_i) = \frac{1}{n}$ for all i.

Proof. Since ϕ is nonnegative on [0,1] and attains 0 only when x=0 or x=1, $H(\xi) \geq 0$. If $H(\xi) = 0$, then for each i, $m(A_i) = 0$ or $m(A_i) = 1$, hence $\xi \stackrel{\circ}{=} \{\emptyset, X\}$. In Lemma 4.2, put $a_i = \frac{1}{n}$ for all i, we have

$$\frac{1}{n}\sum_{i=1}^{n}\phi(m(A_i)) \leq \phi(\frac{m(A_1)+\cdots+m(A_n)}{n}) = \phi(\frac{1}{n}) = \frac{\log n}{n},$$

hence $H(\xi) \leq \log n$ and "=" holds iff $m(A_i) = \frac{1}{n}$ for all i.

Definition 4.3. Let $\xi = \{A_1, \dots, A_n\}$ and $\eta = \{B_1, \dots, B_k\}$ be two partitions of X. The join of ξ and η is defined as

$$\xi \vee \eta = \{A_i \cap B_j : 1 \le i \le n, 1 \le j \le k\}.$$

Notice that $\xi \vee \eta$ is a new partition, it is finer than ξ and η in the sense that any A_i or B_j is a union of elements in $\xi \vee \eta$.

Definition 4.4 (Refinement of a partition). Given two finite partitions ξ and η , write $\xi \leq \eta$ if any element of ξ is a union of elements of η and say η is a refinement of ξ .

4.2 Conditional entropy

Definition 4.5 (Conditional entropy). Let $\xi = \{A_1, \dots, A_n\}$ and $\eta = \{B_1, \dots, B_k\}$ be two partitions of X. Define

$$H(\xi|\eta) = \sum_{j=1}^{k} m(B_j) \sum_{i=1}^{n} \phi(\frac{m(A_i \cap B_j)}{m(B_j)}).$$

Intuitively, entropy (conditional entropy) measures the average uncertainty of determining the location of a typical point in X (if its location in another partition is known). It is helpful to think in this way in the following theorems.

Proposition 4.1. Let ξ and η be two finite partitions of X. Then

- $(i) \ 0 \le H(\xi|\eta) \le H(\xi).$
- (ii) $H(\xi|\eta) = 0 \Leftrightarrow \xi \leq \eta$.
- (iii) $H(\xi|\eta) = H(\xi) \Leftrightarrow \xi$ and η are independent in the sense that $m(A_i \cap B_j) = m(A_i)m(B_j)$ for $A_i \in \xi$, $B_j \in \eta$.

Proof. (i) $H(\xi|\eta) \ge 0$ is obvious. Furthermore,

$$H(\xi|\eta) = \sum_{j} m(B_j) \sum_{i} \phi\left(\frac{m(A_i \cap B_j)}{m(B_j)}\right) = \sum_{i} \sum_{j} m(B_j) \phi\left(\frac{m(A_i \cap B_j)}{m(B_j)}\right)$$

$$\leq \sum_{i} \phi\left(\sum_{j} m(B_j) \frac{m(A_i \cap B_j)}{m(B_j)}\right) = \sum_{i} \phi(m(A_i)) = H(\xi).$$

(ii) Suppose $H(\xi|\eta)=0$. Then for any i,j, we have $m(B_j)\phi\left(\frac{m(A_i\cap B_j)}{m(B_j)}\right)=0$. If $m(B_j)>0$, then $\frac{m(A_i\cap B_j)}{m(B_j)}=0$ or 1, since $\sum_{i=1}^n\frac{m(A_i\cap B_j)}{m(B_j)}=1$, there exists a unique i such that $\frac{m(A_i\cap B_j)}{m(B_j)}=1$ and $m(A_i\cap B_j)=0$ for any other i, hence $\xi \stackrel{\circ}{\leq} \eta$. Conversely, if $\xi \stackrel{\circ}{\leq} \eta$, the for any i,j, if $m(A_i\cap B_j)\neq 0$, then $B_j \stackrel{\circ}{\subseteq} A_i$, so $\frac{m(A_i\cap B_j)}{m(B_j)}=1$, hence every term in the summation of $H(\xi|\eta)$ is 0, that is $H(\xi|\eta)=0$.

(iii) " \Leftarrow " is obvious. If $H(\xi|\eta) = H(\xi)$, then for each i,

$$\sum_{j} m(B_j) \phi\left(\frac{m(A_i \cap B_j)}{m(B_j)}\right) = \phi\left(\sum_{j} m(B_j) \frac{m(A_i \cap B_j)}{m(B_j)}\right),$$

hence $\frac{m(A_i \cap B_j)}{m(B_j)}$ is constant for those j with $m(B_j) > 0$. Write $t_i = \frac{m(A_i \cap B_j)}{m(B_j)}$ for j with $m(B_j) > 0$, then

$$m(A_i) = \sum_{j:m(B_j)>0} m(A_i \cap B_j) = \sum_{j:m(B_j)>0} m(B_j)t_i = t_i.$$

This completes the proof.

Theorem 4.4. Let ξ , η and γ be finite partitions of X. Then

- (i) $H(\xi \vee \eta) = H(\xi) + H(\eta|\xi)$.
- (ii) More generally, $H(\xi \vee \eta | \gamma) = H(\xi | \gamma) + H(\eta | \xi \vee \gamma)$.

Proof. Notice that (i) follows from (ii) by replacing γ by $\{\emptyset, X\}$, so it suffices

to prove (ii). Let
$$\xi = \{A_i\}_i$$
, $\eta = \{B_j\}_j$ and $\gamma = \{C_k\}_k$. Then

$$\begin{split} H(\xi \vee \eta | \gamma) &= \sum_k m(C_k) \sum_i \sum_j \phi \big(\frac{m(A_i \cap B_j \cap C_k)}{m(C_k)} \big) \\ &= -\sum_k m(C_k) \sum_{i,j} \frac{m(A_i \cap B_j \cap C_k)}{m(C_k)} \log \frac{m(A_i \cap B_j \cap C_k)}{m(C_k)} \\ &= -\sum_{i,j,k} m(A_i \cap B_j \cap C_k) \log \frac{m(A_i \cap B_j \cap C_k)}{m(C_k)} \\ &= -\sum_{i,j,k} m(A_i \cap B_j \cap C_k) \Big[\log \frac{m(A_i \cap B_j \cap C_k)}{m(A_i \cap C_k)} + \log \frac{m(A_i \cap C_k)}{m(C_k)} \Big] \\ &= -\sum_{i,j,k} m(A_i \cap B_j \cap C_k) \log \frac{m(A_i \cap B_j \cap C_k)}{m(A_i \cap C_k)} - \sum_{i,j,k} m(A_i \cap B_j \cap C_k) \log \frac{m(A_i \cap C_k)}{m(C_k)} \\ &= -\sum_{i,j,k} m(A_i \cap C_k) \cdot \frac{m(A_i \cap B_j \cap C_k)}{m(A_i \cap C_k)} \log \frac{m(A_i \cap B_j \cap C_k)}{m(A_i \cap C_k)} - \sum_{i,k} m(A_i \cap C_k) \log \frac{m(A_i \cap C_k)}{m(C_k)} \\ &= -\sum_{i,j,k} m(A_i \cap C_k) \sum_j \frac{m(A_i \cap B_j \cap C_k)}{m(A_i \cap C_k)} \log \frac{m(A_i \cap B_j \cap C_k)}{m(A_i \cap C_k)} \\ &= \sum_{i,k} m(C_k) \sum_i \frac{m(A_i \cap C_k)}{m(C_k)} \log \frac{m(A_i \cap C_k)}{m(C_k)} + \sum_k m(C_k) \sum_i \phi \Big(\frac{m(A_i \cap C_k)}{m(C_k)} \Big) \\ &= \sum_{i,k} m(A_i \cap C_k) \sum_j \phi \Big(\frac{m(A_i \cap B_j \cap C_k)}{m(A_i \cap C_k)} \Big) + \sum_k m(C_k) \sum_i \phi \Big(\frac{m(A_i \cap C_k)}{m(C_k)} \Big) \\ &= H(\eta | \xi \vee \gamma) + H(\xi | \gamma). \end{split}$$

Corollary 4.4.1. $H(\xi \vee \eta) \leq H(\xi) + H(\eta)$.

Proof. By the above theorem, $H(\xi \vee \eta) = H(\xi) + H(\eta|\xi) \leq H(\xi) + H(\eta)$.

Theorem 4.5. Assume $\eta \leq \gamma$. Then $H(\xi|\gamma) \leq H(\xi|\eta)$.

Proof. Since $\eta \leq \gamma$, we have $\gamma = \eta \vee \gamma$. Hence

$$H(\xi|\gamma) = H(\xi|\eta \vee \gamma) = \sum_{j,k} m(B_j \cap C_k) \sum_i \phi\left(\frac{m(A_i \cap B_j \cap C_k)}{m(B_j \cap C_k)}\right)$$

$$= \sum_j m(B_j) \left[\sum_i \sum_k \frac{m(B_j \cap C_k)}{m(B_j)} \phi\left(\frac{m(A_i \cap B_j \cap C_k)}{m(B_j \cap C_k)}\right)\right]$$

$$\leq \sum_j m(B_j) \left[\sum_i \phi\left(\sum_k \frac{m(B_j \cap C_k)}{m(B_j)} \times \frac{m(A_i \cap B_j \cap C_k)}{m(B_j \cap C_k)}\right)\right]$$

$$= \sum_j m(B_j) \sum_i \phi\left(\frac{m(A_i \cap B_j)}{m(B_j)}\right) = H(\xi|\eta).$$

4.3 Entropy of T

First we define the entropy of a measure-preserving transformation T w.r.t a partition ξ .

Definition 4.6. Let (X, \mathcal{B}, m, T) be a MPS. Let $\xi = \{A_1, \dots, A_k\}$ be a a partition of X. Define

$$h(T,\xi) := \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{i=0}^{n-1} T^{-i} \xi),$$

where $T^{-i}\xi := \{T^{-i}A_1, \cdots, T^{-i}A_k\}$ and $\bigvee_{i=0}^{n-1} T^{-i}\xi = \xi \bigvee T^{-1}\xi \bigvee \cdots \bigvee T^{-(n-1)}\xi$. We call $h(T,\xi)$ the entropy of T w.r.t ξ .

The existence of the above limit is guaranteed as follows.

Lemma 4.6. $H(T^{-1}\xi) = H(\xi)$.

Proof. It just follows from that T preserves m.

Lemma 4.7. $H(\bigvee_{i=0}^{n+m-1} T^{-i}\xi) \leq H(\bigvee_{i=0}^{n-1} T^{-i}\xi) + H(\bigvee_{i=0}^{m-1} T^{-i}\xi).$

Proof. Notice that

$$H\left(\bigvee_{i=0}^{n+m-1} T^{-i}\xi\right) = H\left(\bigvee_{i=0}^{n-1} T^{-i}\xi\bigvee\bigvee_{i=n}^{n+m-1} T^{-i}\xi\right) = H\left(\bigvee_{i=0}^{n-1} T^{-i}\xi\bigvee T^{-i}(\bigvee_{i=0}^{m-1} T^{-i}\xi)\right)$$

$$\leq H\left(\bigvee_{i=0}^{n-1} T^{-i}\xi\right) + H\left(T^{-n}(\bigvee_{i=0}^{m-1} T^{-i}\xi)\right) = H\left(\bigvee_{i=0}^{n-1} T^{-i}\xi\right) + H\left(\bigvee_{i=0}^{m-1} T^{-i}\xi\right).$$

This lemma shows that $\{H(\bigvee_{i=0}^{n-1} T^{-i}\xi)\}_n$ is a subadditive sequence. Then the limit in Definition 4.6 exists by the following lemma.

Lemma 4.8. Let $\{a_n\}$ be a sequence of real numbers. If $a_{n+m} \leq a_n + a_m$ for any $n, m \in \mathbb{N}_+$, then

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_n \frac{a_n}{n}.$$

Proof. Fix $m \geq 1$. For $n \in \mathbb{N}_+$, there exist q and l such that n = mq + l, with $q \in \mathbb{N}$ and $0 \leq l < m$. Then

$$\frac{a_n}{n} = \frac{a_{mq+l}}{mq+l} \le \frac{a_{mq}+a_l}{mq} \le \frac{a_m}{m} + \frac{a_l}{mq},$$

letting $n \to \infty$, then $q \to \infty$, we have $\overline{\lim}_{n \to \infty} \frac{a_n}{n} \le \frac{a_m}{m}$. Since m is arbitrary, we have $\overline{\lim}_{n \to \infty} \frac{a_n}{n} \le \inf_n \frac{a_n}{n}$. Since $\inf_n \frac{a_n}{n} \le \underline{\lim}_{n \to \infty} \frac{a_n}{n}$, we complete the proof. Notice that the limit may be $-\infty$.

Now we define the entropy of a measure-preserving transformation.

Definition 4.7 (Entropy of T). Let (X, \mathcal{B}, m, T) be MPS. Define

$$h(T) = \sup_{\xi \text{ finite}} h(T, \xi).$$