Lecture 6

We continue to consider some more examples of ergodic transformations.

Example 1. (Bernoulli shift on finite state space).

Let I > 2 be an integer. Consider ¥V = {(z,)2, : z; € {1,2,---,1}}
and o : ¥ — 2N defined by o((2;)2;) = (2,41)32,. Let (p1,pa,--- ,p1) be
a probability vector, i.e. p; > 0 for each ¢ and Z’i‘:l p; = 1. Define p on
SN by u([ivie---ik]) = pi,pi, - pi, for any izig---ix € {1,2,--- ,1}*, where
[i5i i3] := {x € BN : @y =iy, 29 = ig,--- , 2 = i)} is called a cylinder. Let
¢ be the collection of all cylinders, then ¢ is a semi-algebra generating Z(XV).
Since p is countably additive on ¢, by Kolmogorov consistency theorem, p
extends uniquely to a probability measure on 4, still denoted by u. We claim
that o is ergodic w.r.t p. To see this, let A = [i1ig---ix] and B = [j1j2- - Jm)
be two cylinders, then for i > m, u(c=*AN B) = u(A)u(B). Hence

- —1
nh_}n;o - Zu ANB)=p(A)u(B), for A,Be¥9.

By Theorem 3.10, o is ergodic.
The same argument also works in the following general setting.

Example 2. (Bernoulli shift on general state spaces).
o0

Let (Y, %, 1) be a probability space. Let (X, %,m) = H(Y, Z, ). Define
i=0
T:X — X by (¥:)20 +— (¥i+1)52,. Then T is ergodic w.r.t m.
Example 3. (Markov shift).
Let I > 2 be an integer. Let A = (a;;)ix; with 0,1 entries. Define

ﬁ = {(Iz)fil cx; €{1,2,--- 1} and Agizigy = 1 for all i}.

Define o : =5 — SN by o((2:)$2,) = (2541)32,. (3N, 0) is called a subshift of
finite type. Let P = (p;;)ixi be a stochastic matrix in the sense that p;; > 0
and Zé’:l pij = 1 for each i. We assume that p;; > 0 iff a;; = 1. Suppose

P = (p1,p2, - ,p1) is a probability vector with p; > 0 for each ¢ and pP = p.
Then define p on X5 by

p([i1d2 -+ in]) = DiyPiyiaPisis ** Din_yins

for any iyis---i, € {1,2,--- ,1}" with a;,4,,, = 1for k=1,2,--- ,n—1. pis
called a (p, P) Markov measure. p is o-invariant. Moreover p is ergodic iff A is
irreducible in the sense that there exists NV, such that A+A2+-- -4+ AV is strictly
positive, equivalently for any pair 1 < i < j < [, there exist 41,40, -+ ,i; €
{1,2,---,1} such that a;;;, = a4, = =a;,; = L.

Example 4. (Continued fraction transformation).
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Define T': (0,1) — (0,1) by Tz = 2 —[1], where [z] denotes the integral part

xr
of z. T is called the continued fraction transformation. Consider the continued

fraction of a real number x,

1
T = 7 , a1,az, - €N
a1 +
1 . 1
a
2 as + e
Notice that a; = [1], as = [%[l]] = [#], inductively a, = [72r-]. Now
define a measure y on (0,1) by ,u(B) = 1022 B %de for Borel set B C (0,1).

w is called the Gaussian measure. p is T-invariant and ergodic. See Pollicott
and Yuri’s book for a proof.

3.5 Mixing

Recall that a measure-preserving transformation 7' is ergodic if and only if for
any A, B € A,

n—1
o1 —k _
nl;rrgo - ];:0 m(T~"ANB) =m(A)m(B).

We can change the way that the limit converges to give the following notions.

Definition 3.4. Let (X, %,m,T) be a MPS.
(i) We say T is weak-mizing if for any A, B € A,

n—1
o1 —k —
nh_r)réo - kio Im(T~"AN B) —m(A)m(B)| = 0.

(i1) Say that T is mizing (or strong-mizing) if for any A, B € A,

nlgr;@ m(T~"AN B) =m(A)m(B).

Remark: (1). In probability view, T' is ergodic < for any A,B € B, T~"A
is independent form B on average. T is mixing < for any A, B € B, T""A is
asymptotically independent form B.

(2). Tt is clear that mixing = weak-mixing = ergodicity.

Example 1. Let a be an irrational number. Let m be the Haar measure on
R/Z. Define T : R/Z — R/Z by Tx = v+ a(mod 1). Then T is ergodic but not
weak-mixing. To see this, let A = [0, %] and B = [Z,1). Notice that for each
k, T"*A = A — ka(mod1). Since {ka(mod1) : k € N} is uniformly distributed
on [0,1), there are half of k& such that —ka(mod1) € [0, %), for such k, we have
A — ka(mod1) C [0, § + 1] disjoint with B, therefore

lim LS (T F AN B) - m(Aym(B)| > %m(A)m(B) 0.
k=0

n—oo TV 77—
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Hence T is not mixing.
Remark: There are examples of weak-mixing MPSs which are not mixing.
Just like the case of ergodicity, to check mixing property it is enough to
consider a subcollection of # that generates . The following theorem can be
proved in the same way as Theorem 3.10.

Theorem 3.11. Let (X, B, m,T) be a MPS. Let 4 be a semi-algebra generating
PB. Then
(i) T is ergodic < for any A,B € ¥,

n—1

1
lim — Y " m(T"*AN B) = m(A)m(B).
(ii) T is weak-mizing < for any A,B € 9,
1 n—1
Jim ; |m(T~* AN B) — m(A)ym(B)| = 0.

(#i) T is mizing < for any A,B € ¥,
lim m(T~"AN B) =m(A)m(B).

n—oo

Example 2. (Bernoulli shift on finite state space).

Let & = {[iyig- iy : i1ig---ip € {1,2,--- ,1}¥ k € N}, then ¥ is a semi-
algebra generating 9. Recall we have shown that for any A, B € 4, u(c " AN
B) = u(A)p(B) when n is large, hence o is mixing.

Example 3. (Markov shift).

Let (f, P) be a Markov measure on X5. Then T is mixing < T is weak-
mixing < P is primitive in the sense that there exists N such that P is strictly
positive.

We can further characterize weak-mixing as follows.

Definition 3.5. A subset J of N is said to have zero density in N if

1
nhﬁrr;o ﬁﬁ(Jﬂ [0,n —1]) =0.
For example {1,22,32 ...} has zero density, the set of all primes has zero
density.

Theorem 3.12. Let (X, B, m,T) be a MPS. The following are equivalent.
(i) T is weak-mizing.
(ii) For any A, B € B, there exists a subset J = J(A, B) of N of density 0,
such that
lim m(T~"ANB) =m(A)m(B).

JZFn—o0

(iii) For any A, B € A,

n—1
S —k 2 _
nlgr;o - kgzo Im(T~"AN B) —m(A)m(B)|* = 0.
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This theorem follows from the following lemma immediately.

Lemma 3.13. Let {a,} be a bounded sequence of real numbers. The following

are equivalent.
n—1
(i) lim L3 |ag| =0.
(ii) There exists a subset J of N of density 0 such that

li =0.
Tgnros "

n—1
(ii) lim 1 kgjo a2 = 0.

Proof. (i) = (ii). For k € Ny, define J; = {n € N : |a,| > 1}, clearly
J1 € Jy C -+, we claim that each Jj is of density 0. Notice that

n—1

Slal= Y al= Y - = inon - 1),
k k

=0

0<j<n-—1 0<j<n—1
JEJk jeJk
hence
1n—1 1 L 1
0= lim 1> Tm —#(JpN[0,n—1)).
d 73 leil 2 g T SeCen0n 1)

Hence each Ji is of density 0. Therefore we can find a sequence of integers
0=1ly<l; <ly <---,such that

1
—#(Jgr1 N[0, —1]) < for any n > .
n

k+1
Now define

oo

J = (ks 0 [l i)
k=0

We claim that J has zero density. Let n be given, pick k such that [, <n < l41.
Since J; C Jy C -+ -, we have

k
T 0,n =1 € (Jega N [l bieyr) 0 [0,m = 1]) € Jra N[0, 0 — 1],
i=0
then ) ) .
- —1h< = )< —
nﬁ(‘]m [0771 1]) = nﬁ(JIHJ N [O,TL 1]) = k+ 17

since as n — oo, k — oo, we see that J is of density 0. Let n ¢ J and

Iy <n <lgs1,thenn & Jiiq,s0 |a,| < %-H’ hence ngirgoo a, = 0. Notice that a

similar argument yields (iii) = (ii). (ii) = (i) and (ii) = (iii) are straightforward.
This completes the proof. O
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One way to obtain new MPSs from old ones is to consider their product.

Definition 3.6. Let (X1, %1, m1,T1) and (Xa, B2, ma, To) be two MPSs. Their
product is denoted by (X1 X Xo, By X Ba,m1 X ma, Tt X Ty), where

(i) $B1 x By is the smallest o-algebra containing all rectangles By X By with
B € %1,32 € PBo.

(i) my X mq is the product probability measure.

(1ii) Th x T is defined by (Ty x To)(z,y) := (Thx, Tay), for (x,y) € X1 X Xs.

The fact T7 x T5 is a measure-preserving transformation can be seen in the
following way: Let 4 = {By x By : By € %1,Bs € $2}. Then ¢ is a semi-
algebra. One easily checks T} x T preserves measure of all rectangles in ¥.
Write .4 = {A € %1 X ,@2 : (m1 X mg)((Tl X TQ)ilA) = (m1 X TILQ)(A))},
then .# O ¢4 and .4 is a monotone class. Then by monotone class theorem,
M= AB.

The following theorem shows the connection between weak-mixing of T" and
the ergodicity of T' x T.

Theorem 3.14. Let (X, B, m,T) be a MPS. The following are equivalent.
(i) T is weak-mizing.
(ii) T x T is ergodic.
(1ii) T x T is weak-mizing.

Proof. We show (i) = (iii) = (ii) = (i). First consider (i) = (iii). Let
A B,C,D € #A. Since T is weak-mixing, there exist Ji,Jo C N of density
0, such that

lim m(T "ANC)=m(A)m(C) and lim m(T~"BND)=m(B)m(D).

J1ZEFn—o00 Jo2ZEn—o00

Notice that

Jim - mxm((T xT)™"(Ax B)n(C x D))
n¢JiUJs

= lim mxm((T™"ANC)x (T""BND))
ng¢J1UJy

= lim m(T"ANC)m(T""BND)
n¢JiUJz

= m(A)m(B)m(C)m(D)

= (m x m)(A x B)(m x m)(C x D).

Since J1 U Jo is of density 0, by Theorem 3.12 T' x T is weak-mixing. (iii) =
(ii) is trivial. Now consider (ii) = (i). Let A,B € #. Since T x T is ergodic,
we have
n—1 1 n—1
> m(T*AnB) = - > mxm((TxT)™ A x X)n(Bx X))
k=0 k=0

— m(A)m(B), as n — oo,

3=
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and

n—1 n—1
1 > m(T *AnB)* = IS« m((T7"ANB) x (T"*An B))
n/k:O n/k:O
1 n—1 e
:EZme(T (Ax A)N (B x B))

Hence we have

n—1 n—1

% > (m(T*ANB) - m(A)ym(B))? = % > m(T*AnB)?
k=0 k=0
— 2m(A)m(B) [% Y

By Theorem 3.12, T' is weak-mixing.
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