Lecture 6

We continue to consider some more examples of ergodic transformations. Example 1. (Bernoulli shift on finite state space).

Let $l \geq 2$ be an integer. Consider $\Sigma^{\mathbb{N}} = \{(x_i)_{i=1}^{\infty} : x_i \in \{1, 2, \cdots, l\}\}$ and $\sigma: \Sigma^{\mathbb{N}} \to \Sigma^{\mathbb{N}}$ defined by $\sigma((x_i)_{i=1}^{\infty}) = (x_{i+1})_{i=1}^{\infty}$. Let (p_1, p_2, \cdots, p_l) be a probability vector, i.e. $p_i > 0$ for each i and $\sum_{i=1}^{l} p_i = 1$. Define μ on $\Sigma^{\mathbb{N}}$ by $\mu([i_1 i_2 \cdots i_k]) = p_{i_1} p_{i_2} \cdots p_{i_k}$ for any $i_i i_2 \cdots i_k \in \{1, 2, \cdots, l\}^k$, where $[i_i i_2 \cdots i_k] := \{x \in \Sigma^{\mathbb{N}} : x_1 = i_1, x_2 = i_2, \cdots, x_k = i_k\}$ is called a cylinder. Let \mathscr{G} be the collection of all cylinders, then \mathscr{G} is a semi-algebra generating $\mathscr{B}(\Sigma^N)$. Since μ is countably additive on \mathscr{G} , by Kolmogorov consistency theorem, μ extends uniquely to a probability measure on \mathscr{B} , still denoted by μ . We claim that σ is ergodic w.r.t μ . To see this, let $A = [i_1 i_2 \cdots i_k]$ and $B = [j_1 j_2 \cdots j_m]$ be two cylinders, then for i > m, $\mu(\sigma^{-i}A \cap B) = \mu(A)\mu(B)$. Hence

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(T^{-i}A \cap B) = \mu(A)\mu(B), \text{ for } A, B \in \mathcal{G}.$$

By Theorem 3.10, σ is ergodic.

The same argument also works in the following general setting.

Example 2. (Bernoulli shift on general state spaces).

Let (Y, \mathscr{F}, μ) be a probability space. Let $(X, \mathscr{B}, m) = \prod_{i=0}^{\infty} (Y, \mathscr{F}, \mu)$. Define

 $T: X \to X$ by $(y_i)_{i=0}^{\infty} \mapsto (y_{i+1})_{i=0}^{\infty}$. Then T is ergodic w.r.t m. Example 3. (Markov shift).

Let $l \geq 2$ be an integer. Let $A = (a_{ij})_{l \times l}$ with 0, 1 entries. Define

$$\Sigma_A^{\mathbb{N}} := \{(x_i)_{i=1}^{\infty} : x_i \in \{1, 2, \cdots, l\} \text{ and } a_{x_i x_{i+1}} = 1 \text{ for all } i\}.$$

Define $\sigma: \Sigma_A^{\mathbb{N}} \to \Sigma_A^{\mathbb{N}}$ by $\sigma((x_i)_{i=1}^{\infty}) = (x_{i+1})_{i=1}^{\infty}$. $(\Sigma_A^{\mathbb{N}}, \sigma)$ is called a subshift of finite type. Let $P = (p_{ij})_{l \times l}$ be a stochastic matrix in the sense that $p_{ij} \geq 0$ and $\sum_{j=1}^{l} p_{ij} = 1$ for each i. We assume that $p_{ij} > 0$ iff $a_{ij} = 1$. Suppose $\vec{p} = (p_1, p_2, \cdots, p_l)$ is a probability vector with $p_i > 0$ for each i and $\vec{p}P = \vec{p}$. Then define μ on $\Sigma_A^{\mathbb{N}}$ by

$$\mu([i_1i_2\cdots i_n]) = p_{i_1}p_{i_1i_2}p_{i_2i_3}\cdots p_{i_{n-1}i_n},$$

for any $i_1i_2\cdots i_n\in\{1,2,\cdots,l\}^n$ with $a_{i_ki_{k+1}}=1$ for $k=1,2,\cdots,n-1$. μ is called a (\vec{p},P) Markov measure. μ is σ -invariant. Moreover μ is ergodic iff A is irreducible in the sense that there exists N, such that $A+A^2+\cdots+A^N$ is strictly positive, equivalently for any pair $1\leq i\leq j\leq l$, there exist $i_1,i_2,\cdots,i_k\in\{1,2,\cdots,l\}$ such that $a_{ii_1}=a_{i_1i_2}=\cdots=a_{i_kj}=1$.

Example 4. (Continued fraction transformation).

Define $T:(0,1)\to (0,1)$ by $Tx=\frac{1}{x}-[\frac{1}{x}]$, where [x] denotes the integral part of x. T is called the continued fraction transformation. Consider the continued fraction of a real number x,

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}, \ a_1, a_2, \dots \in \mathbb{N}.$$

Notice that $a_1 = \left[\frac{1}{x}\right]$, $a_2 = \left[\frac{1}{\frac{1}{x}-\left[\frac{1}{x}\right]}\right] = \left[\frac{1}{Tx}\right]$, inductively $a_n = \left[\frac{1}{T^{n-1}x}\right]$. Now define a measure μ on (0,1) by $\mu(B) = \frac{1}{\log 2} \int_B \frac{1}{x+1} dx$ for Borel set $B \subset (0,1)$. μ is called the Gaussian measure. μ is T-invariant and ergodic. See Pollicott and Yuri's book for a proof.

3.5 Mixing

Recall that a measure-preserving transformation T is ergodic if and only if for any $A, B \in \mathcal{B}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} m(T^{-k}A \cap B) = m(A)m(B).$$

We can change the way that the limit converges to give the following notions.

Definition 3.4. Let (X, \mathcal{B}, m, T) be a MPS.

(i) We say T is weak-mixing if for any $A, B \in \mathcal{B}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |m(T^{-k}A \cap B) - m(A)m(B)| = 0.$$

(ii) Say that T is mixing (or strong-mixing) if for any $A, B \in \mathscr{B}$,

$$\lim_{n \to \infty} m(T^{-n}A \cap B) = m(A)m(B).$$

Remark: (1). In probability view, T is ergodic \Leftrightarrow for any $A, B \in \mathcal{B}, T^{-n}A$ is independent form B on average. T is mixing \Leftrightarrow for any $A, B \in \mathcal{B}, T^{-n}A$ is asymptotically independent form B.

(2). It is clear that mixing \Rightarrow weak-mixing \Rightarrow ergodicity.

Example 1. Let α be an irrational number. Let m be the Haar measure on \mathbb{R}/\mathbb{Z} . Define $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ by $Tx = x + \alpha \pmod{1}$. Then T is ergodic but not weak-mixing. To see this, let $A = [0, \frac{1}{8}]$ and $B = [\frac{7}{8}, 1)$. Notice that for each $k, T^{-k}A = A - k\alpha \pmod{1}$. Since $\{k\alpha \pmod{1} : k \in \mathbb{N}\}$ is uniformly distributed on [0, 1), there are half of k such that $-k\alpha \pmod{1} \in [0, \frac{1}{2})$, for such k, we have $A - k\alpha \pmod{1} \subset [0, \frac{1}{8} + \frac{1}{2}]$ disjoint with B, therefore

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |m(T^{-k}A \cap B) - m(A)m(B)| \ge \frac{1}{2} m(A)m(B) > 0.$$

Hence T is not mixing.

Remark: There are examples of weak-mixing MPSs which are not mixing.

Just like the case of ergodicity, to check mixing property it is enough to consider a subcollection of \mathcal{B} that generates \mathcal{B} . The following theorem can be proved in the same way as Theorem 3.10.

Theorem 3.11. Let (X, \mathcal{B}, m, T) be a MPS. Let \mathcal{G} be a semi-algebra generating \mathcal{B} . Then

(i) T is ergodic \Leftrightarrow for any $A, B \in \mathcal{G}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} m(T^{-k}A \cap B) = m(A)m(B).$$

(ii) T is weak-mixing \Leftrightarrow for any $A, B \in \mathcal{G}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |m(T^{-k}A \cap B) - m(A)m(B)| = 0.$$

(iii) T is mixing \Leftrightarrow for any $A, B \in \mathscr{G}$,

$$\lim_{n \to \infty} m(T^{-n}A \cap B) = m(A)m(B).$$

Example 2. (Bernoulli shift on finite state space).

Let $\mathscr{G} = \{[i_1 i_2 \cdots i_k] : i_1 i_2 \cdots i_k \in \{1, 2, \cdots, l\}^k, k \in \mathbb{N}\}$, then \mathscr{G} is a semi-algebra generating \mathscr{B} . Recall we have shown that for any $A, B \in \mathscr{G}$, $\mu(\sigma^{-n}A \cap B) = \mu(A)\mu(B)$ when n is large, hence σ is mixing.

Example 3. (Markov shift).

Let (\vec{p}, P) be a Markov measure on $\Sigma_A^{\mathbb{N}}$. Then T is mixing $\Leftrightarrow T$ is weak-mixing $\Leftrightarrow P$ is primitive in the sense that there exists N such that P^N is strictly positive.

We can further characterize weak-mixing as follows.

Definition 3.5. A subset J of $\mathbb N$ is said to have zero density in $\mathbb N$ if

$$\lim_{n\to\infty}\frac{1}{n}\sharp(J\cap[0,n-1])=0.$$

For example $\{1, 2^2, 3^2, \cdots\}$ has zero density, the set of all primes has zero density.

Theorem 3.12. Let (X, \mathcal{B}, m, T) be a MPS. The following are equivalent.

- (i) T is weak-mixing.
- (ii) For any $A, B \in \mathcal{B}$, there exists a subset J = J(A, B) of \mathbb{N} of density 0, such that

$$\lim_{J \not\ni n \to \infty} m(T^{-n}A \cap B) = m(A)m(B).$$

(iii) For any $A, B \in \mathcal{B}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |m(T^{-k}A \cap B) - m(A)m(B)|^2 = 0.$$

This theorem follows from the following lemma immediately.

Lemma 3.13. Let $\{a_n\}$ be a bounded sequence of real numbers. The following are equivalent.

(i)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |a_k| = 0.$$

(i) $\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} |a_k| = 0.$ (ii) There exists a subset J of $\mathbb N$ of density 0 such that

$$\lim_{J \not\ni n \to \infty} a_n = 0.$$

(iii)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} a_k^2 = 0.$$

Proof. (i) \Rightarrow (ii). For $k \in \mathbb{N}_+$, define $J_k = \{n \in \mathbb{N} : |a_n| \geq \frac{1}{k}\}$, clearly $J_1 \subseteq J_2 \subseteq \cdots$, we claim that each J_k is of density 0. Notice that

$$\sum_{j=0}^{n-1} |a_j| \ge \sum_{\substack{0 \le j \le n-1 \\ j \in J_k}} |a_j| \ge \sum_{\substack{0 \le j \le n-1 \\ j \in J_k}} \frac{1}{k} = \frac{1}{k} \sharp (J_k \cap [0, n-1]),$$

hence

$$0 = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} |a_j| \ge \frac{1}{k} \overline{\lim}_{n \to \infty} \frac{1}{n} \sharp (J_k \cap [0, n-1]).$$

Hence each J_k is of density 0. Therefore we can find a sequence of integers $0 = l_0 < l_1 < l_2 < \cdots$, such that

$$\frac{1}{n}\sharp (J_{k+1}\cap [0,n-1]) \le \frac{1}{k+1}$$
 for any $n \ge l_k$.

Now define

$$J = \bigcup_{k=0}^{\infty} (J_{k+1} \cap [l_k, l_{k+1})).$$

We claim that J has zero density. Let n be given, pick k such that $l_k \leq n < l_{k+1}$. Since $J_1 \subseteq J_2 \subseteq \cdots$, we have

$$J \cap [0, n-1] \subseteq \bigcup_{i=0}^{k} (J_{k+1} \cap [l_k, l_{k+1}) \cap [0, n-1]) \subseteq J_{k+1} \cap [0, n-1],$$

then

$$\frac{1}{n}\sharp \big(J\cap [0,n-1]\big) \leq \frac{1}{n}\sharp \big(J_{k+1}\cap [0,n-1]\big) \leq \frac{1}{k+1},$$

since as $n \to \infty$, $k \to \infty$, we see that J is of density 0. Let $n \notin J$ and $l_k \le n < l_{k+1}$, then $n \notin J_{k+1}$, so $|a_n| < \frac{1}{k+1}$, hence $\lim_{J \not\ni n \to \infty} a_n = 0$. Notice that a similar argument yields (iii) \Rightarrow (ii). (ii) \Rightarrow (i) and (ii) \Rightarrow (iii) are straightforward. This completes the proof. One way to obtain new MPSs from old ones is to consider their product.

Definition 3.6. Let $(X_1, \mathcal{B}_1, m_1, T_1)$ and $(X_2, \mathcal{B}_2, m_2, T_2)$ be two MPSs. Their product is denoted by $(X_1 \times X_2, \mathcal{B}_1 \times \mathcal{B}_2, m_1 \times m_2, T_1 \times T_2)$, where

- (i) $\mathscr{B}_1 \times \mathscr{B}_2$ is the smallest σ -algebra containing all rectangles $B_1 \times B_2$ with $B_1 \in \mathscr{B}_1, B_2 \in \mathscr{B}_2$.
 - (ii) $m_1 \times m_1$ is the product probability measure.
 - (iii) $T_1 \times T_2$ is defined by $(T_1 \times T_2)(x, y) := (T_1 x, T_2 y)$, for $(x, y) \in X_1 \times X_2$.

The fact $T_1 \times T_2$ is a measure-preserving transformation can be seen in the following way: Let $\mathscr{G} = \{B_1 \times B_2 : B_1 \in \mathscr{B}_1, B_2 \in \mathscr{B}_2\}$. Then \mathscr{G} is a semi-algebra. One easily checks $T_1 \times T_2$ preserves measure of all rectangles in \mathscr{G} . Write $\mathscr{M} = \{A \in \mathscr{B}_1 \times \mathscr{B}_2 : (m_1 \times m_2)((T_1 \times T_2)^{-1}A) = (m_1 \times m_2)(A)\}$, then $\mathscr{M} \supseteq \mathscr{G}$ and \mathscr{M} is a monotone class. Then by monotone class theorem, $\mathscr{M} = \mathscr{B}$.

The following theorem shows the connection between weak-mixing of T and the ergodicity of $T \times T$.

Theorem 3.14. Let (X, \mathcal{B}, m, T) be a MPS. The following are equivalent.

- (i) T is weak-mixing.
- (ii) $T \times T$ is ergodic.
- (iii) $T \times T$ is weak-mixing.

Proof. We show (i) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i). First consider (i) \Rightarrow (iii). Let $A, B, C, D \in \mathcal{B}$. Since T is weak-mixing, there exist $J_1, J_2 \subseteq \mathbb{N}$ of density 0, such that

$$\lim_{J_1 \not\ni n \to \infty} m(T^{-n}A \cap C) = m(A)m(C) \text{ and } \lim_{J_2 \not\ni n \to \infty} m(T^{-n}B \cap D) = m(B)m(D).$$

Notice that

$$\lim_{\substack{n \to \infty \\ n \notin J_1 \cup J_2}} m \times m \left((T \times T)^{-n} (A \times B) \cap (C \times D) \right)$$

$$= \lim_{\substack{n \to \infty \\ n \notin J_1 \cup J_2}} m \times m \left((T^{-n} A \cap C) \times (T^{-n} B \cap D) \right)$$

$$= \lim_{\substack{n \to \infty \\ n \notin J_1 \cup J_2}} m (T^{-n} A \cap C) m (T^{-n} B \cap D)$$

$$= m(A) m(B) m(C) m(D)$$

$$= (m \times m) (A \times B) (m \times m) (C \times D).$$

Since $J_1 \cup J_2$ is of density 0, by Theorem 3.12 $T \times T$ is weak-mixing. (iii) \Rightarrow (ii) is trivial. Now consider (ii) \Rightarrow (i). Let $A, B \in \mathcal{B}$. Since $T \times T$ is ergodic, we have

$$\frac{1}{n} \sum_{k=0}^{n-1} m(T^{-k}A \cap B) = \frac{1}{n} \sum_{k=0}^{n-1} m \times m((T \times T)^{-k}(A \times X) \cap (B \times X))$$
$$\to m(A)m(B), \text{ as } n \to \infty,$$

and

$$\frac{1}{n} \sum_{k=0}^{n-1} m(T^{-k}A \cap B)^2 = \frac{1}{n} \sum_{k=0}^{n-1} m \times m((T^{-k}A \cap B) \times (T^{-k}A \cap B))$$
$$= \frac{1}{n} \sum_{k=0}^{n-1} m \times m(T^{-k}(A \times A) \cap (B \times B))$$
$$\to m(A)^2 m(B)^2, \text{ as } n \to \infty.$$

Hence we have

$$\begin{split} \frac{1}{n} \sum_{k=0}^{n-1} \left(m(T^{-k}A \cap B) - m(A)m(B) \right)^2 &= \frac{1}{n} \sum_{k=0}^{n-1} m(T^{-k}A \cap B)^2 \\ &- 2m(A)m(B) \left[\frac{1}{n} \sum_{k=0}^{n-1} m(T^{-k}A \cap B) \right] + m(A)^2 m(B)^2 \\ &\to 0, \text{ as } n \to \infty. \end{split}$$

By Theorem 3.12, T is weak-mixing.