
Lecture 3

So far we have learned two fundamental recurrence theorems in dynamic
systems, namely the Birkhoff recurrence theorem in a TDS and the Poincaré
recurrence theorem in a measure-preserving system (MPS for short). However
they do not give quantitative information about the behavior of orbits, for
example, the frequency of a orbit returnning to a given set. In this lecture, we
are going to present a method to study the statistical behavior of orbits and
prove some ergodic theorems.

3 Statistical behavior of orbits and ergodic the-
orems

3.1 Statistical behavior of orbits

Let (X,T ) be a TDS. For B ∈ B(X) and x ∈ X, set FB(T, x, n) = ]{0 ≤ j ≤
n− 1 : T jx ∈ B}, let FB(T, x) = lim

n→∞
FB(T,x,n)

n provided the limit exists. The

term FB(T, x) is called the asymptotic density of the distribution of the iterates
over B and X \B.

Let χB denote the characteristic function of B, that is χB(x) = 1 if x ∈ B,
χB(x) = 0 if x /∈ B. Then

FB(T, x, n) =

n−1∑
k=0

χB(T kx) and FB(T, x) = lim
n→∞

1

n

n−1∑
k=0

χB(T kx).

The above expression of FB(T, x) is naturally interpreted as the average of
χB at the orbit of x. Rather than dealing with characteristic functions, it is
more reasonable to start from studying the average of continuous functions.

Let C(X) be the space of real-valued continuous functions endowed with the
uniform topology (that is the topology induced by sup-norm). For ϕ ∈ C(X)

and x ∈ X, let Ix(ϕ) = lim
n→∞

1
n

n−1∑
k=0

ϕ(T kx) if the limit exists. Ix(ϕ) is called the

Birkhoff average (or the time average) of ϕ at x.
Fix x ∈ X. If we assume that Ix(ϕ) exists for any ϕ ∈ C(X), it’s easy to

see Ix : C(X) −→ R enjoys the following properties:
(i) (Linearity) Ix(αϕ+βψ) = αIx(ϕ)+βIx(ψ) for any α, β ∈ R, ϕ, ψ ∈ C(X).
(ii) (Boundness) |Ix(ϕ)| ≤ supy∈X |ϕ(y)|, for any ϕ ∈ C(X).
(iii) (Positivity) Ix(ϕ) ≥ 0 if ϕ ≥ 0, Ix(1) = 1.
(iv) (Invariant under T ) Ix(ϕ ◦ T ) = Ix(ϕ) for any ϕ ∈ C(X).
(i)-(iii) indicate that Ix is a positive bounded linear functional on C(X),

hence by the Riesz representation theorem, there exists a unique Borel proba-
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bility measure µx on X such that

Ix(ϕ) =

∫
ϕdµx, for any ϕ ∈ C(X).

Applying (iv),
∫
ϕdµx =

∫
ϕ ◦ Tdµx for any ϕ ∈ C(X), which implies that µx

is T -invariant, that is µx(T−1B) = µx(B) for all B ∈ B(X).
Notice that the above argument is based on the assumption that Ix(ϕ) exists

for all ϕ ∈ C(X), so it’s natural to consider the following questions.
Questions: (1) Are there points x ∈ X such that Ix(ϕ) exists for all ϕ ∈

C(X)?
(2) If µ is a T -invariant measure, does there exist x ∈ X such that Ix(ϕ) =∫

ϕdµ for all ϕ ∈ C(X)?
The answers to the above questions are both positive. It bases on two

fundamental theorems, one in TDS, one in ergodic theory.

3.2 Existence of invariant measures

Theorem 3.1 (Krylov–Bogolyubov). For any TDS (X,T ), there exists at least
one T -invariant Borel probability measure.

Proof. Fix a y ∈ X. Let {ϕi}∞i=1 be a countable subset dense in C(X). Notice

that for each m ∈ N+, the sequence 1
n

n−1∑
k=0

ϕm(T ky) is bounded by ‖ϕm‖∞,

hence it has a convergent subsequence. Then by the diagonal process, one can
find a subsequence {nk}∞k=1 ⊂ N+ such that

lim
k→∞

1

nk

nk−1∑
j=0

ϕm(T jy) =: J(ϕm) (3.1)

exists for all ϕm. We claim

lim
k→∞

1

nk

nk−1∑
j=0

ϕ(T jy) =: J(ϕ) exists for all ϕ ∈ C(X). (3.2)

To see (3.2), let ϕ ∈ C(X) and ε > 0, choose ϕm such that

sup
x∈X
|ϕm(x)− ϕ(x)| < ε,

then

1

nk

nk−1∑
j=0

ϕ(T jy) =
1

nk

nk−1∑
j=0

ϕm(T jy) +
1

nk

nk−1∑
j=0

(ϕ(T jy)− ϕm(T jy)).

Notice that on the right hand side of the above equality, the first term converges
to J(ϕm), the second term is bounded by ε in absolute value, hence all limit

10



points of the left hand side differ only by ε in absolute value, letting ε→ 0, we
see (3.2) holds.

Now consider J : C(X) −→ R. Just as Ix in subsection 3.1, J satisfies
conditions: (1) linearity, (2) boundness, (3) positivity, (4) J(ϕ) = J(ϕ ◦ T ). By
the Riesz representation theorem, there exists a Borel probability measure µ on
X, such that for all ϕ ∈ C(X), J(ϕ) =

∫
ϕdµ, moreover

∫
ϕdµ =

∫
ϕ ◦ Tdµ,

which implies µ = µ ◦ T−1.

3.3 Birkhoff ergodic theorem

Theorem 3.2 (Birkhoff Ergodic Theorem (1931)). Let (X,B, µ, T ) be a MPS.
Let f ∈ L1(µ) (i.e. f : X −→ C measurable and

∫
|f |dµ <∞). Then

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =: f∗(x) exists µ-a.e. x ∈ X,

furthermore

f∗ ∈ L1(µ) and

∫
A

f∗dµ =

∫
A

fdµ for any A ∈ B with T−1A = A.

The proof of this theorem is based on the following.

Theorem 3.3 (Maximal Ergodic Theorem). Let (X,B, µ, T ) be a MPS. Let

f ∈ L1
R(µ). Set f0 = 0 and fn =

n−1∑
k=0

f(T kx) for n ≥ 1. For N ∈ N, define

FN (x) = max
0≤n≤N

fn(x). Then∫
{x:FN (x)>0}

fdµ ≥ 0.

Proof. Fix N ≥ 1. Notice that

FN (Tx) + f(x) = max
0≤n≤N

fn(Tx) + f(x)

= max{0, f(Tx), f(Tx) + f(T 2x), · · · , f(Tx) + · · ·+ f(TNx)}+ f(x)

= max
1≤n≤N+1

fn(x) ≥ max
1≤n≤N

fn(x).

LetA = {x : FN (x) > 0}. Since FN (x) = max
0≤n≤N

fn(x) = max {0, max
1≤n≤N

fn(x)},

we have FN (x) = max
1≤n≤N

fn(x) on A, hence f(x) ≥ FN (x)−FN (Tx) on A. Since

FN is nonnegative and
∫
X
g(Tx)dµ =

∫
X
g(x)dµ for any g ∈ L1(µ), we have∫

A

fdµ ≥
∫
A

FN (x)dµ−
∫
A

FN (Tx)dµ

=

∫
X

FN (x)dµ−
∫
A

FN (Tx)dµ

=

∫
X

FN (Tx)dµ−
∫
A

FN (Tx)dµ ≥ 0.
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Corollary 3.3.1. Let (X,B, µ, T ) be a MPS. Let g ∈ L1
R(µ) and α ∈ R. Set

Bα = {x : sup
n≥1

1
n

n−1∑
k=0

g(T kx) > α}. Then for any A ∈ B with T−1A = A, we

have ∫
A∩Bα

gdµ ≥ αµ(A ∩Bα).

Proof. First consider the case that A = X. Define f = g − α and FN as in the
above theorem. Then Bα =

⋃
N≥1
{x : FN (x) > 0} and {x : FN (x) > 0} ↑ Bα.

For each N , by the above theorem,
∫
{x:FN (x)>0} fdµ ≥ 0, apply the dominated

convergence theorem,
∫
Bα

fdµ ≥ 0, therefore
∫
Bα

gdµ ≥ αµ(Bα).

In general case that A 6= X, since A = T−1A, we can consider the subsystem
(A,B(A), µ|A, T |A), where B(A) is the sub-σ-algebra of B when restricted to
A, more precisely, B(A) = A ∩ B := {A ∩ B : B ∈ B}, µ|A is defined by

µ|A(B) = µ(B)
µ(A) for B ∈ B(A) (the case µ(A) = 0 is trivial). To apply the

previous result to the new system, replace Bα by Bα ∩ A and µ by µ|A, then∫
A∩Bα gdµ|A ≥ αµ|A(A ∩ Bα), that is 1

µ(A)

∫
A∩Bα gdµ ≥

αµ(A∩Bα)
µ(A) , therefore∫

A∩Bα gdµ ≥ αµ(A ∩Bα).
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