Lecture 2

Recall Lemma 2.2. A natural question is that whether the converse is true,
that is if y € Y is recurrent w.r.t S, is x recurrent w.s.t T for any z € 7~ 1(y)?
In general it is not true, but it does hold in a special case called group extension.

Definition 2.5 (Group extension). Let (Y, S) be a TDS and K a compact group.
Assume ¢ : Y — K is continuous. Define X =Y X K and T : X — X by
T(y, k) = (Sy,¥(y)k). Setm: X =Y by w(y, k) =y. Then (Y,S) is a factor
of (X, T) under factor map 7. Say (X,T) is a group extension of (Y, S).

Examples: 1. For a € (0,1), let (Y, S) = (T,z — z + a(modl)). Set
(X,T) by X =T2,T(x,y) = (r + o,z +y) (From now on, we sometimes omit
“(mod1)” to ease notation). Then X is a group extension of Y. To see this, let
Y=T,K=T,sety:Y — K by ¥(y) =y, then T(61,65) = (61 +a,01 +02) =
(91 + a, 1/)(01) + 02)

2. Define (T2, T) by T(61,62) = (61 + a,20; + 62 + «). Then (T%,T) is a
group extension of (T,z — x + a(modl)). To see this, let Y = K = T, define
¥:Y — K by ¥(y) = 2y + «, then T'(01,602) = (61 + o, 9(01) + 62).

Theorem 2.3. Let (Y,S) be a TDS and K a compact group. ¢ : Y — K s
continuous. Let (X, T) be given by X =Y x K, T(y, k) = (Sy,¥(y)k). Then if
yo € Y is recurrent w.r.t S, (yo, k) is recurrent w.r.t T for any k € K.

Proof. For k1 € K, define R, : X — X by Ry, (y,k) = (y,kk1). Note for
any (yvk) € X7 Rk1T(y7k) = Rkl (Syﬂ/)(y)k) = (Syaw(y)kkl) = T(y7kk1) =
TRy, (y, k), hence Ry, and T commute. Let e be the identity of K, write
Q(yove) = {Tn(y07e) nz 1}’ then Ry, (Q(y07e)) = Q(Rkl (yan)) = Q(QOakl)'
We first show (yo,€) is recurrent w.r.t T, it suffices to show (yo,€) € Q(yo,e).
Since T (yo, €) = T" " (Syo, ¥ (y0)) = -+ = (S0, ¥(S""y0)¥(S™ >w0) - -~ ¥ (v0)),
by assumption that gyg is recurrent w.r.t S and K is compact, there exist
{n;}2, € N4 and k1 € K such that T™ (yo,e) — (yo, k1), hence (yo,k1) €
Q(yo, €), now act on both sides by Ry,, Rk, (Y0, k1) € Rk, (Q(yo, e)) = Q(Ry, (yo,€)) =
Q(yo, k1), that is (yo, k?) € Q(yo, k1) C Q(yo, €), inductively, (yo, k1), (yo, k3), - , €
Q(yo,e). We claim (yp,e) is an accumulation point of {(yo,k}) : n > 1}.
Since K is compact, there exists {l;}2°; C Ny, such that I; 1 co and k‘ll'i — b
for some b € K, then k™' = ki (kl)=1 - ¢ the claim follows, hence
(y0,e) € Q(yo,e), i.e. (yo,e) is a recurrent point in X. Now for any k € K,

we have (yo, k) = Ri(yo,e) € Rr(Q(yo,€))) = Q(Rk(yo,¢)) = Q(vo, k), hence
(yo, k) is recurrent in X. 0

In the above theorem, the fact that group extension preserves recurrent
points finds its applications in number theory, which is first discovered by
Furstenberg.

Recall that (T2,T) given by T'(01,02) = (61 + a, 201 + a + 63) is a group
extension of (T,0 — 6 + a(mod1)). Since every point in T is recurrent w.r.t
0 — 6 4+ a(mod1), apply Theorem 2.3, we have



Corollary 2.3.1. Let o € (0,1). Any point in T? is recurrent w.r.t T(01,0s) =
(01 + 0,201 + 02 + ).

Now consider the obit of (0,0),
(0,0) = (o, @) = (2a,40) — --- = (na,n’a) = -,

since (0,0) is recurrent, there exists {n;}%°;, such that (n;a,n?a) — (0,0).
Hence we obtain

Corollary 2.3.2. For any o € (0,1) and € > 0, there exist n > 1 and m € N,
such that [n*a —m| < e.

More generally, let Py(x) € R[z] be a polynomial of degree d with P,(0) = 0,
using the same idea we have

Theorem 2.4. For any € > 0, there exist n > 1 and m € Z such that
|Pi(n) —m| <e.

Proof. Set Pd_l(CC) = Pd(13+1)—Pd(1‘), Pd_g(l‘) = Pd_l(ZZ?-Fl)—Pd_l(l’), s ,Po(l‘) =
Py(x+ 1) — Pi(z), then for Kk =0,1,--- ,d, Pi(x) is a polynomial of degree of

at most k, in particular Py(x) = « some constant. For k = 1,2,...,d, define

Ty : TF — T* by

T(01,02,--- ,0k) = (61 +,02 401, , 0k + 0k_1).

It’s easy to see (T¢,Ty) is a group extension of (T4~1, Ty 1), ---, (T? T3) is
a group extension of (T, — 6 + a(modl)). Since every point in T is re-
current w.r.t 6 — 6 + a(modl), by Theorem 2.3, every point in T? is recur-
rent w.r.t Th, inductively, every point in T¢ is recurrent w.r.t Ty;. Note that
Ty(Pi(n), Pa(n), -+ ,Pi(n)) = (Pi(n+1),Py(n+1), -+, Pg(n+ 1)), hence

T3 (P1(0), P2(0), - -+, Pa(0)(= 0)) = (Pi(n), P2(n),- -, Pa(n)),Vn € Ny.

Since (P1(0), P2(0),- -+, P4(0)) is recurrent w.r.t Ty, there exists {n;}32; C Ny,
such that Py(n;) — P4(0) = 0, hence for any € > 0, there exists n > 1, such
that |Py(n)(modl)| < e. O

2.4 Minilarity

Definition 2.6 (Minimal TDS). Let (X,T) be a TDS, say X is minimal if
{Trx:n>1} =X forallz € X.

Equivalently, X is said to be minimal if X has no proper non-empty 7-
invariant compact subset, that is if Y € X compact, Y # () and TY =Y, then
Y =X.

Example: For « € (0,1), define T, :  — x4+ a(mod 1) on T. Then if a € Q,
every point in T is periodic, hence (T, T,,) is not minimal. If o € Q, (T, T,) is
minimal, this can be seen from the fact that {n;a(mod1)}$2, is dense in [0, 1]
for a € Q. However, we give a proof as follows.



Proposition 2.2. (T,T,) is minimal if and only if o & Q.

Proof. Only “ < ” needs a proof. Suppose o« ¢ Q, but T, is not minimal.
Then there exists a non-empty and compact A C T, such that A # T and
A+ a = A(modl). Since T\ A # () and is open, we can write T\ A = U, I},
a countable union of disjoint open intervals. Note T, (T \ A) = T \ A. Assume
I is such an interval of the longest length (such I can be found since T has
finite length). There are only three possibilities: (1). I NT,(I) = 0; (2).
INTL(I)#0and T # T, (I); (3). I =T,(I). (2) is impossible, since otherwise
IUT,(I) C T\ Ais an open interval of greater length than I, which contradicts
with the choice of I. (3) is also impossible, since otherwise I = m + T, (I) for
some m € Z, contradicting with a € Q. Therefore INT, (I) = §. Proceed in this
way, we get a sequence of pairwise disjoint open intervals {I, T, (1), T2(I), -},
with each interval being of the same length, which is impossible since T is
compact. Hence T, is minimal for « & Q.

O

Any topological dynamical system contains a subsystem that is minimal.

Theorem 2.5. Let (X, T) be a TDS, then there exists a compactY C X, Y # 0,
such that TY =Y and (Y,T|y) is minimal.

Proof. The proof is already contained in Birkhoff Recurrence Theorem. In fact,
let F = {Y C X nonemty and compact, TY C Y}, partially ordered under
set inclusion. As shown in Theorem 2.1, there exists a ¥ € F which is a
minimal element of F. Hence Y C X compact, Y # () and TY C Y. Since
T(TY)CTY CY and TY is compact, TY € F, whence TY =Y since Y is a
minimal element of . If A C Y is non-empty, compact and TA = A, then for
the same reason, A =Y, therefore (Y, T|y) is a minimal subsystem. O

2.5 Poincaré Recurrence Theorem

Theorem 2.6 (Poincaré Recurrence Theorem). Let (X,.%,u) be a probability
space. T : X — X is measurable and preserves u. Let B € .F with u(B) > 0,
then almost every point of B returns infinitely many often to B. That is

u({z € B:T"x € B for infinite many n > 1}) = u(B).
Proof. First Note

xz € B:T"z € B for infinite many n > 1} = B T kB.
{ y

n=0k=n
For each n € N, set B, = Jp—, T~*B, then
BoDBlDBQD"',

since B C By,
B=BNBy>DBNBiODBNByD---.



Since T~" By = B,, for each n € N and T preserves p,
#(Bo) = p(Br) = pu(Ba) = -
and since p is a probability measure hence finite, we get
iw(B) = (BN By) =pu(BNB1)=u(BNBz)---.

Therefore

n(B U T7*B) =u(()(BNB.)) = lim w(BNB,) = u(BNBo) = u(B),

n=0k=n n=0

note we have used the fact that u is finite in the second equality. O



