
Lecture 2

Recall Lemma 2.2. A natural question is that whether the converse is true,
that is if y ∈ Y is recurrent w.r.t S, is x recurrent w.s.t T for any x ∈ π−1(y)?
In general it is not true, but it does hold in a special case called group extension.

Definition 2.5 (Group extension). Let (Y, S) be a TDS and K a compact group.
Assume ψ : Y → K is continuous. Define X = Y × K and T : X → X by
T (y, k) = (Sy, ψ(y)k). Set π : X → Y by π(y, k) = y. Then (Y, S) is a factor
of (X,T ) under factor map π. Say (X,T ) is a group extension of (Y, S).

Examples: 1. For α ∈ (0, 1), let (Y, S) = (T, x 7→ x + α(mod1)). Set
(X,T ) by X = T2, T (x, y) = (x + α, x + y) (From now on, we sometimes omit
“(mod1)” to ease notation). Then X is a group extension of Y . To see this, let
Y = T,K = T, set ψ : Y → K by ψ(y) = y, then T (θ1, θ2) = (θ1 +α, θ1 + θ2) =
(θ1 + α,ψ(θ1) + θ2).

2. Define (T2, T ) by T (θ1, θ2) = (θ1 + α, 2θ1 + θ2 + α). Then (T2, T ) is a
group extension of (T, x 7→ x + α(mod1)). To see this, let Y = K = T, define
ψ : Y → K by ψ(y) = 2y + α, then T (θ1, θ2) = (θ1 + α,ψ(θ1) + θ2).

Theorem 2.3. Let (Y, S) be a TDS and K a compact group. ψ : Y → K is
continuous. Let (X,T ) be given by X = Y ×K,T (y, k) = (Sy, ψ(y)k). Then if
y0 ∈ Y is recurrent w.r.t S, (y0, k) is recurrent w.r.t T for any k ∈ K.

Proof. For k1 ∈ K, define Rk1 : X → X by Rk1(y, k) = (y, kk1). Note for
any (y, k) ∈ X, Rk1T (y, k) = Rk1(Sy, ψ(y)k) = (Sy, ψ(y)kk1) = T (y, kk1) =
TRk1(y, k), hence Rk1 and T commute. Let e be the identity of K, write
Q(y0, e) = {Tn(y0, e) : n ≥ 1}, then Rk1(Q(y0, e)) = Q(Rk1(y0, e)) = Q(y0, k1).
We first show (y0, e) is recurrent w.r.t T , it suffices to show (y0, e) ∈ Q(y0, e).
Since Tn(y0, e) = Tn−1(Sy0, ψ(y0)) = · · · = (Sny0, ψ(Sn−1y0)ψ(Sn−2y0) · · ·ψ(y0)),
by assumption that y0 is recurrent w.r.t S and K is compact, there exist
{ni}∞i=1 ⊂ N+ and k1 ∈ K such that Tni(y0, e) → (y0, k1), hence (y0, k1) ∈
Q(y0, e), now act on both sides byRk1 , Rk1(y0, k1) ∈ Rk1(Q(y0, e)) = Q(Rk1(y0, e)) =
Q(y0, k1), that is (y0, k

2
1) ∈ Q(y0, k1) ⊂ Q(y0, e), inductively, (y0, k1), (y0, k

2
1), · · · ,∈

Q(y0, e). We claim (y0, e) is an accumulation point of {(y0, kn1 ) : n ≥ 1}.
Since K is compact, there exists {li}∞i=1 ⊂ N+, such that li ↑ ∞ and kli1 → b

for some b ∈ K, then k
li+1−li
1 = k

li+1

1 (kli1 )−1 → e, the claim follows, hence
(y0, e) ∈ Q(y0, e), i.e. (y0, e) is a recurrent point in X. Now for any k ∈ K,
we have (y0, k) = Rk(y0, e) ∈ Rk(Q(y0, e))) = Q(Rk(y0, e)) = Q(y0, k), hence
(y0, k) is recurrent in X.

In the above theorem, the fact that group extension preserves recurrent
points finds its applications in number theory, which is first discovered by
Furstenberg.

Recall that (T2, T ) given by T (θ1, θ2) = (θ1 + α, 2θ1 + α + θ2) is a group
extension of (T, θ 7→ θ + α(mod1)). Since every point in T is recurrent w.r.t
θ 7→ θ + α(mod1), apply Theorem 2.3, we have
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Corollary 2.3.1. Let α ∈ (0, 1). Any point in T2 is recurrent w.r.t T (θ1, θ2) =
(θ1 + α, 2θ1 + θ2 + α).

Now consider the obit of (0, 0),

(0, 0)→ (α, α)→ (2α, 4α)→ · · · → (nα, n2α)→ · · · ,

since (0, 0) is recurrent, there exists {ni}∞i=1, such that (niα, n
2
iα) → (0, 0).

Hence we obtain

Corollary 2.3.2. For any α ∈ (0, 1) and ε > 0, there exist n ≥ 1 and m ∈ N,
such that |n2α−m| < ε.

More generally, let Pd(x) ∈ R[x] be a polynomial of degree d with Pd(0) = 0,
using the same idea we have

Theorem 2.4. For any ε > 0, there exist n ≥ 1 and m ∈ Z such that

|Pd(n)−m| < ε.

Proof. Set Pd−1(x) = Pd(x+1)−Pd(x), Pd−2(x) = Pd−1(x+1)−Pd−1(x), · · · , P0(x) =
P1(x + 1) − P1(x), then for k = 0, 1, · · · , d, Pk(x) is a polynomial of degree of
at most k, in particular P0(x) = α some constant. For k = 1, 2, . . . , d, define
Tk : Tk → Tk by

T (θ1, θ2, · · · , θk) = (θ1 + α, θ2 + θ1, · · · , θk + θk−1).

It’s easy to see (Td, Td) is a group extension of (Td−1, Td−1), · · · , (T2, T2) is
a group extension of (T, θ 7→ θ + α(mod1)). Since every point in T is re-
current w.r.t θ 7→ θ + α(mod1), by Theorem 2.3, every point in T2 is recur-
rent w.r.t T2, inductively, every point in Td is recurrent w.r.t Td. Note that
Td(P1(n), P2(n), · · · , Pd(n)) = (P1(n+ 1), P2(n+ 1), · · · , Pd(n+ 1)), hence

Tnd (P1(0), P2(0), · · · , Pd(0)(= 0)) = (P1(n), P2(n), · · · , Pd(n)),∀n ∈ N+.

Since (P1(0), P2(0), · · · , Pd(0)) is recurrent w.r.t Td, there exists {ni}∞i=1 ⊂ N+,
such that Pd(ni) → Pd(0) = 0, hence for any ε > 0, there exists n ≥ 1, such
that |Pd(n)(mod1)| < ε.

2.4 Minilarity

Definition 2.6 (Minimal TDS). Let (X,T ) be a TDS, say X is minimal if
{Tnx : n ≥ 1} = X for all x ∈ X.

Equivalently, X is said to be minimal if X has no proper non-empty T -
invariant compact subset, that is if Y ⊂ X compact, Y 6= ∅ and TY = Y , then
Y = X.

Example: For α ∈ (0, 1), define Tα : x 7→ x+α( mod 1) on T. Then if α ∈ Q,
every point in T is periodic, hence (T, Tα) is not minimal. If α 6∈ Q, (T, Tα) is
minimal, this can be seen from the fact that {niα(mod1)}∞i=1 is dense in [0, 1]
for α 6∈ Q. However, we give a proof as follows.
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Proposition 2.2. (T, Tα) is minimal if and only if α 6∈ Q.

Proof. Only “ ⇐ ” needs a proof. Suppose α 6∈ Q, but Tα is not minimal.
Then there exists a non-empty and compact A ⊂ T, such that A 6= T and
A+ α = A(mod1). Since T \ A 6= ∅ and is open, we can write T \ A = ∪∞j=1Ij ,
a countable union of disjoint open intervals. Note Tα(T \ A) = T \ A. Assume
I is such an interval of the longest length (such I can be found since T has
finite length). There are only three possibilities: (1). I ∩ Tα(I) = ∅; (2).
I ∩ Tα(I) 6= ∅ and T 6= Tα(I); (3). I = Tα(I). (2) is impossible, since otherwise
I ∪Tα(I) ⊂ T\A is an open interval of greater length than I, which contradicts
with the choice of I. (3) is also impossible, since otherwise I = m + Tα(I) for
some m ∈ Z, contradicting with α 6∈ Q. Therefore I∩Tα(I) = ∅. Proceed in this
way, we get a sequence of pairwise disjoint open intervals {I, Tα(I), T 2

α(I), · · · },
with each interval being of the same length, which is impossible since T is
compact. Hence Tα is minimal for α 6∈ Q.

Any topological dynamical system contains a subsystem that is minimal.

Theorem 2.5. Let (X,T ) be a TDS, then there exists a compact Y ⊂ X, Y 6= ∅,
such that TY = Y and (Y, T |Y ) is minimal.

Proof. The proof is already contained in Birkhoff Recurrence Theorem. In fact,
let F = {Y ⊂ X nonemty and compact, TY ⊂ Y }, partially ordered under
set inclusion. As shown in Theorem 2.1, there exists a Y ∈ F which is a
minimal element of F . Hence Y ⊂ X compact, Y 6= ∅ and TY ⊂ Y . Since
T (TY ) ⊂ TY ⊂ Y and TY is compact, TY ∈ F , whence TY = Y since Y is a
minimal element of F . If A ⊂ Y is non-empty, compact and TA = A, then for
the same reason, A = Y , therefore (Y, T |Y ) is a minimal subsystem.

2.5 Poincaré Recurrence Theorem

Theorem 2.6 (Poincaré Recurrence Theorem). Let (X,F , µ) be a probability
space. T : X → X is measurable and preserves µ. Let B ∈ F with µ(B) > 0,
then almost every point of B returns infinitely many often to B. That is

µ({x ∈ B : Tnx ∈ B for infinite many n ≥ 1}) = µ(B).

Proof. First Note

{x ∈ B : Tnx ∈ B for infinite many n ≥ 1} = B
⋂ ∞⋂

n=0

∞⋃
k=n

T−kB.

For each n ∈ N, set Bn =
⋃∞
k=n T

−kB, then

B0 ⊃ B1 ⊃ B2 ⊃ · · · ,

since B ⊂ B0,
B = B ∩B0 ⊃ B ∩B1 ⊃ B ∩B2 ⊃ · · · .
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Since T−nB0 = Bn for each n ∈ N and T preserves µ,

µ(B0) = µ(B1) = µ(B2) = · · · ,

and since µ is a probability measure hence finite, we get

µ(B) = µ(B ∩B0) = µ(B ∩B1) = µ(B ∩B2) · · · .

Therefore

µ
(
B
⋂ ∞⋂

n=0

∞⋃
k=n

T−kB
)

= µ
( ∞⋂
n=0

(B∩Bn)
)

= lim
n→∞

µ(B∩Bn) = µ(B∩B0) = µ(B),

note we have used the fact that µ is finite in the second equality.
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