Lecture 10

Let us consider some examples of calculation of topological entropy.

Example 1. (Full shift over finite states). Let (Σ, σ) be the one-sided full shift over $\{1, 2, \cdots, k\}$. Consider a partition $\mathscr{P} = \{[i] : 1 \leq i \leq k\}$, note that \mathscr{P} is also an open cover of Σ and

$$\bigvee_{i=0}^{n-1} \sigma^{-i} \mathscr{P} = \{ [x_1 x_2 \cdots x_n] : x_1, \cdots, x_n \in \{1, \cdots, k\} \}.$$

Since open sets in $\bigvee_{i=0}^{n-1} \sigma^{-i} \mathscr{P}$ are disjoint, $N(\bigvee_{i=0}^{n-1} \sigma^{-i} \mathscr{P}) = k^n$. Since $\operatorname{diam}(\bigvee_{i=0}^{n-1} \sigma^{-i} \mathscr{P}) \to 0$ as $n \to \infty$, we have

$$h(\sigma) = h(\sigma, \mathscr{P}) = \lim_{n \to \infty} \frac{1}{n} \log N\left(\bigvee_{i=0}^{n-1} \sigma^{-i} \mathscr{P}\right) = \lim_{n \to \infty} \frac{1}{n} \log k^n = \log k.$$

Example 2. (One-sided subshift over finite states). Let (Σ, σ) be the one-sided full shift over $\{1, 2, \dots, k\}$. Let $X \subseteq \Sigma$ be compact and σ -invariant, that is $\sigma X \subseteq X$, then we call (X, σ_X) a subshift. Let $\mathscr P$ be defined as in the above example, define

$$\mathscr{P}_X = \{[i] \cap X : i = 1, \cdots, k\},\$$

then

$$\bigvee_{i=0}^{n-1} \sigma^{-i} \mathscr{P}_X = \{ [x_1 x_2 \cdots x_n] \cap X \neq \emptyset : x_1, \cdots, x_n \in \{1, \cdots, k\} \}.$$

Also we have diam $\left(\bigvee_{i=0}^{n-1}\sigma^{-i}\mathscr{P}_X\right)\to 0$ as $n\to\infty$, hence

$$h(\sigma_X) = h(\sigma_X, \mathscr{P}_X) = \lim_{n \to \infty} \frac{\log l_n}{n},$$

where $l_n := \sharp \{ [x_1 \cdots x_n] \cap X \neq \emptyset : x_1, \cdots, x_n \in \{1, \cdots, k\} \}$. Those $[x_1 \cdots x_n] \cap X \neq \emptyset$ are called admissible words.

Remark: For any $\alpha \in [0, \log k]$, there exists a subshift $X \subseteq \Sigma$ such that $h(\sigma_X) = \alpha$.

Example 3. (One-sided subshift of finite type over $\{1, \dots, k\}$). Let $A = (a_{ij})_{k \times k}$ with $a_{ij} = 0$ or 1. Define

$$\Sigma_A = \{(x_i)_{i=1}^{\infty} \in \Sigma : a_{x_i x_{i+1}} = 1 \forall i \ge 1\}.$$

Then

$$\begin{split} l_n &= \sharp \{x_1 \cdots x_n : a_{x_i x_{i+1}} = 1 \text{ for } i = 1, \cdots, n-1\} \\ &= \sum_{x_1 \cdots x_n} a_{x_1 x_2} a_{x_2 x_3} \cdots a_{x_{n-1} x_n} \\ &= \sum_{x_1, x_n} \sum_{x_2 \cdots x_{n-1}} a_{x_1 x_2} a_{x_2 x_3} \cdots a_{x_{n-1} x_n} \\ &= \sum_{x_1, x_n} (A^{n-1})_{x_1, x_n} \approx ||A^{n-1}||. \end{split}$$

Hence

$$h(\sigma_A) = \lim_{n \to \infty} \frac{\log l_n}{n} = \lim_{n \to \infty} \frac{\log ||A^{n-1}||}{n} = \log \rho(A),$$

where $\rho(A)$ is the spectral radius of A defined by $\rho(A) := \max_i |\lambda_i|$, where λ_i are eigenvalues of A.

Proposition 5.2. Let (X,T) be a TDS. Assume that $d(Tx,Ty) \leq d(x,y)$ for $x,y \in X$, then h(T) = 0.

Proof. Recall $d_n(x,y) = \max_{1 \leq i \leq n-1} d(T^i x, T^i y)$, $B_n(x,\epsilon) = \{y \in X : d_n(x,y) < \epsilon\}$ and $N_n(\epsilon) = \inf\{k : \exists x_1, \dots, x_k, s.t. \cup_{i=1}^k B_n(x_i, \epsilon) \supseteq X\}$. Then

$$h(T) = \lim_{\epsilon \to 0} \overline{\lim}_{n \to \infty} \frac{\log N_n(\epsilon)}{n}.$$

Since T is contractive, $d_n(x, y) = d(x, y)$ for all n, hence $N_n(\epsilon)$ is independent of n, by above formula h(T) = 0.

As an application, the rotation on the circle defined by $T: \mathbb{T} \to \mathbb{T}, x \mapsto x + \alpha \pmod{1}$ has entropy zero. Also the rotation on \mathbb{T}^d defined by $(x_1, \dots, x_d) \mapsto (x_1 + \alpha, \dots, x_d + \alpha_d) \pmod{1}$ has entropy zero.

Example 4. (Affine map on \mathbb{T}^d). Let A be a $d \times d$ integral matrix. Consider $f_A : \mathbb{T}^d \to \mathbb{T}^d, \vec{x} \mapsto A\vec{x} \pmod{1}$, then

$$h(f_A) = \sum_{|\lambda_i| > 1} \log |\lambda_i|,$$

where $\lambda_1, \dots, \lambda_d$ are eigenvalues of A.

6 Relations between topological and measuretheoretical entropies

6.1 Entropy map

Let (X,T) be a TDS. Let $\mathcal{M}(X)$ be the collection of all Borel probability measures on X, recall it is compact in the weak-* topology (that is the topology defined by $\mu_n \to \mu$ if $\int_X f d\mu_n \to \int_X f d\mu$ for all $f \in C(X)$).

Let (M,T) be the collection of T-invariant Borel probability measures on X, then M(X,T) is a convex compact subspace of $\mathcal{M}(X)$. Notice that $M(X,T) \neq \emptyset$ by Krylov–Bogolyubov theorem. We define the entropy map by

$$\mu \mapsto h_{\mu}(T), \ \mu \in M(X,T).$$

Proposition 6.1. The entropy map is affine, that is for any μ and $m \in M(X,T)$ and $p \in (0,1)$,

$$h_{p\mu+(1-p)m}(T) = ph_{\mu}(T) + (1-p)h_m(T).$$

Lemma 6.1. Let $\phi(x) = -x \log x$ for $x \in [0,1]$. Then for any $x_1, x_2, \dots, x_k \in [0,1]$ and any probability vector $\vec{p} = (p_1, p_2, \dots, p_k)$,

$$\sum_{i=1}^{k} p_i \phi(x_i) \le \phi(\sum_{i=1}^{k} p_i x_i) \le \sum_{i=1}^{k} [p_i \phi(x_i) + x_i \phi(p_i)].$$

Proof. The first " \leq " follows from the concavity of ϕ . For the second,

$$\phi(\sum_{i=1}^{k} p_i x_i) = -(\sum_{i=1}^{k} p_i x_i) \log(\sum_{i=1}^{k} p_i x_i) \le -\sum_{i=1}^{k} p_i x_i \log p_i x_i$$
$$= -\sum_{i=1}^{k} (p_i x_i \log x_i + x_i p_i \log p_i) = \sum_{i=1}^{k} [p_i \phi(x_i) + x_i \phi(p_i)].$$

Corollary 6.1.1. Let $\mu_1, \dots, \mu_k \in M(X,T)$ and $\vec{p} = (p_1, \dots, p_k)$ be a probability vector. Let $\xi = \{A_1, \dots, A_n\}$ be a finite Borel partition of X. Then

$$\sum_{i=1}^{k} p_i H_{\mu_i}(\xi) \le H_{\sum_i p_i \mu_i}(\xi) \le \sum_{i=1}^{k} p_i H_{\mu_i}(\xi) - \sum_{i=1}^{k} p_i \log p_i.$$

Proof. By the above lemma,

$$H_{\sum_{i} p_{i} \mu_{i}}(\xi) = \sum_{A \in \xi} \phi(\sum_{i} p_{i} \mu_{i}(A)) \leq \sum_{A \in \xi} \sum_{i=1}^{k} [p_{i} \phi(\mu_{i}(A)) + \mu_{i}(A) \phi(p_{i})]$$
$$= \sum_{i=1}^{k} p_{i} H_{\mu_{i}}(\xi) + \sum_{i=1}^{k} \phi(p_{i}).$$

Now we can prove that the entropy map is affine.

Proof of Proposition 6.1. Let ξ be a finite partition of X. Let $\mu, m \in M(X,T)$ and $p \in (0,1)$. By the above corollary,

and
$$p \in (0,1)$$
. By the above coronary,
$$pH_{\mu}\Big(\bigvee_{i=0}^{n-1} T^{-i}\xi\Big) + (1-p)H_{m}\Big(\bigvee_{i=0}^{n-1} T^{-i}\xi\Big) \le H_{p\mu+(1-p)m}\Big(\bigvee_{i=0}^{n-1} T^{-i}\xi\Big)$$
$$\le pH_{\mu}\Big(\bigvee_{i=0}^{n-1} T^{-i}\xi\Big) + (1-p)H_{m}\Big(\bigvee_{i=0}^{n-1} T^{-i}\xi\Big)$$
$$-p\log p - (1-p)\log (1-p).$$

Dividing by n, letting $n \to \infty$, we have

$$ph_{\mu}(T,\xi) + (1-p)h_m(T,\xi) = h_{p\mu+(1-p)m}(T,\xi).$$

Hence $\sup_{\xi} h_{p\mu+(1-p)m}(T,\xi) \leq ph_{\mu}(T)+(1-p)h_m(T)$, that is $h_{p\mu+(1-p)m}(T) \leq ph_{\mu}(T)+(1-p)h_m(T)$. For the converse inequality, if one of $h_{\mu}(T)$, $h_m(T)$ is ∞ , then clearly $h_{p\mu+(1-p)m}(T)=\infty$. In the other case, for any $\epsilon>0$, we can find ξ_1,ξ_2 such that

$$h_{\mu}(T,\xi_1) > h_{\mu}(T) - \epsilon, \ h_m(T,\xi_2) > h_m(T) - \epsilon.$$

Take $\eta = \xi_1 \vee \xi_2$, then

$$h_{p\mu+(1-p)m}(T,\eta) = ph_{\mu}(T,\eta) + (1-p)h_{m}(T,\eta)$$

$$\geq ph_{\mu}(T,\xi_{1}) + (1-p)h_{m}(T,\xi_{2})$$

$$\geq ph_{\mu}(T) + (1-p)h_{m}(T) - 2\epsilon.$$

This completes the proof.

Our target is the following famous variational principle.

Theorem 6.2.

$$h_{top}(T) = \sup\{h_{\mu}(T) : \mu \in M(X, T)\}.$$

We first establish some lemmas.

Lemma 6.3. Let X be a compact metric space, $\mu \in \mathcal{M}(X)$.

- (i) For $x \in X$ and $\delta > 0$, $\exists 0 < \epsilon < \delta$, s.t. $\mu(\partial B(x, \epsilon)) = 0$.
- (ii) $\forall \epsilon > 0$, \exists a Borel partition $\xi = \{A_1, \dots, A_k\}$ of X, s.t. $diam(\xi) < \epsilon$ and $\mu(\partial(A_i)) = 0, i = 1, \dots, k$.

Proof. (i) Fix $x \in X$, consider the map $r \mapsto \mu(\partial B(x,r))$. Since μ is a probability measure, $\mu(\partial B(x,r)) > 0$ for at most countable many r, which proves (i). (ii) $\forall \epsilon > 0$, by (i) we can find finite open balls $\{B_1, \cdots, B_k\}$ covering X with $\operatorname{diam}(B_i) < \epsilon$ and $\mu(\partial B_i) = 0$. Take $A_1 = B_1$, $A_2 = B_2 \setminus B_1, \cdots, A_k = B_k \setminus (B_1 \cup B_2 \cup \cdots B_k)$, then $\xi = \{A_1, \cdots, A_k\}$ is a partition with $\operatorname{diam}(\xi) < \epsilon$, moreover, $\partial A_i \subseteq \cup_{j=1}^k \partial B_j$, hence $\mu(\partial A_i) = 0$ for $i = 1, \cdots, k$.