Lecture 10

Let us consider some examples of calculation of topological entropy.

Example 1. (Full shift over finite states). Let (X,0) be the one-sided full
shift over {1,2,---,k}. Consider a partition & = {[i] : 1 <14 < k}, note that
& is also an open cover of ¥ and

n—1

\/ 0 P ={[mwa- x|t w1,y € {1, K}

i=0
Since open sets in \/;:01 c~'P are disjoint, N(\/;:O1 o 'P) = k™. Since
diam (/=) 07" %) — 0 as n — oo, we have

n—1
1 ; 1
h(o) = h(o, ) = nlij;o EIOgN( i\:/o o' P) = nlgrgoﬁlogk" = logk.

Example 2. (One-sided subshift over finite states). Let (3,0) be the one-
sided full shift over {1,2,--- ,k}. Let X C ¥ be compact and o-invariant, that
is 0 X C X, then we call (X,0x) a subshift. Let & be defined as in the above
example, define

Px ={lnNnX:i=1,---,k},

then

n—1

\/ o Py ={[mxe- )N X AD:ay, - 2, € {1, k}}.
=0

Also we have diam ( \/?;01 07" Px) — 0 as n — oo, hence

logi,
h(ox) = h(ox, Px) = lim o8 ,

n—oco n

where I, ;= t#{[z1- 2 ] N X #0: 21, ;2 € {1,--+ ,k}}. Those [x1---z,] N
X # () are called admissible words.

Remark: For any a € [0,logk], there exists a subshift X C ¥ such that
hiox) = a.

Example 3. (One-sided subshift of finite type over {1,--- ,k}). Let A =
(@ij)kxk with a;; = 0 or 1. Define

Ya={(z:)21 € E:apz,, = 1Vi > 1}
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Then
In =81 2n g0, =1fori=1,--- ,n-1}

= E Uz xoQuoms " Axpy_ 12y

T1 Ty

E E Qg xoQxoxs " " Az, 1z,

X1,Tn T2 Tn—1

Y (A ey, = lATH.

T1,Tn

Hence

hoa) = Jim 25—l — log p(A).

where p(A) is the spectral radius of A defined by p(A4) := max; |A;|, where \;
are eigenvalues of A.

log,, . log||A™7Y|
= = lim —>———
n

Proposition 5.2. Let (X,T) be a TDS. Assume that d(Txz,Ty) < d(z,y) for
xz,y € X, then h(T) = 0.
Proof. Recall d,,(z,y) = maxi<;j<n—1d(T'z, T), By(z,€) = {y € X : dp(z,y) <
€} and N, (e) = inf{k : 3wy, -+ , 2, 8.t. US| B, (2:,€) 2 X}. Then
— log N,
B(T) = lim T 28 2n(6)

e—0n—oo n

Since T is contractive, d,(z,y) = d(z,y) for all n, hence N, (¢€) is independent

of n, by above formula h(T) = 0. O

As an application, the rotation on the circle defined by T': T — T,z +— = +
a(mod1) has entropy zero. Also the rotation on T? defined by (x1,---,24)
(z1 4+, - ,xq + ag)(mod1) has entropy zero.

Example 4. (Affine map on T¢). Let A be a d x d integral matrix. Consider
fa:T¢ = T4 %+ AF(modl), then

h(fa) =Y log|Ai,

[Ai|>1

where A1,- -+, Aq are eigenvalues of A.

6 Relations between topological and measure-
theoretical entropies

6.1 Entropy map

Let (X,T) be a TDS. Let .#(X) be the collection of all Borel probability mea-
sures on X, recall it is compact in the weak-* topology ( that is the topology
defined by g, — p if [ fdpn — [y fdp for all f e C(X)).
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Let (M, T) be the collection of T-invariant Borel probability measures on X
then M (X, T) is a convex compact subspace of .# (X ). Notice that M (X, T) #
by Krylov-Bogolyubov theorem. We define the entropy map by

p—=h(T), pe M(X,T).

Proposition 6.1. The entropy map is affine, that is for any p and m €
M(X,T) and p € (0,1),

hppt (1—pym (T) = Phu(T) + (1 = p)hn (T).

Lemma 6.1. Let ¢(z) = —xlogx for x € [0,1]. Then for any x1,za, - ,x) €
[0,1] and any probability vector p'= (p1,p2, - ,Pk),

k k k
Zpﬂﬁ(fﬂi) <o) piwi) < Z[pﬂb(ﬂﬁi) + zid(pi)]-

Proof. The first “<” follows from the concavity of ¢. For the second,

k k k k
¢(>_piwi) = —(Q_piwi)log (3 piwi) < =Y pir;logpi;
i=1 i=1 =1 =1
k

k
= - Z(pz% log z; + x;p; logp;) = Z[ZD@(%) + xi0(pi)]-
im1

i=1
O

Corollary 6.1.1. Let p1,--- ,ux € M(X,T) and p' = (p1,--- ,pr) be a proba-
bility vector. Let £ = {Ay,---,Ap} be a finite Borel partition of X. Then

k k k
szH,uq(g) S Hzlpzﬂ7(£) S Zleﬂz(g) - ZP:’ 10gpi~
i=1 i=1 i=1

Proof. By the above lemma,

k

Hys, pini(§) = Z ¢(Z pipti(A)) < Z Z[pi¢(ﬂi(f4)) + wi(A)d(pi)]

Acg i Acg i=1

k
— ZpiHM (€ + Z o (ps)-

Now we can prove that the entropy map is affine.
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Proof of Proposition 6.1. Let & be a finite partition of X. Let u,m € M(X,T)
and p € (0,1). By the above corollary,

n—1
u( \/ Tﬁif) +(1- \/ T 15 M+(1 p)m \/ T 15
i=0 i=0
n—1
<pH,(\/ T7%¢) + \/ T7)
=0

—plogp — (1 —p)log (1 —p).

Dividing by n, letting n — oo, we have
h’u(Tv g) + (1 - ) (T g) - h‘pu+ 1— p)m(T7 f)

Hence supg hyyi (1-pym (T §) < phy(T) + (1= p)han (T)), that is byt (1—pym (T7) <
phu(T) + (1 — p)hy, (T). For the converse inequality, if one of h,(T'), hy(T') is
o0, then clearly hyp,4 (1—pym(T) = co. In the other case, for any € > 0, we can
find &, &> such that

(T, €1) > h(T) = €, hon(T, &) > hn (T) — €.

Take n = & V &, then

hpu-‘r(l—p)m(Ta 77) = ph,u(Ta 77) + (1 - p)hm (T7 77)
2 phyu(T,&1) + (1 = p)hin (T, &2)
> phu(T) + (1 = p)hm(T) — 2€.

This completes the proof. O
Our target is the following famous variational principle.

Theorem 6.2.
hiop(T) = sup{h,(T) : p € M(X,T)}.

We first establish some lemmas.

Lemma 6.3. Let X be a compact metric space, p € M (X).

(i) Forx € X and 6 >0, 30 <€ <9, s.t. u(0B(z,€)) =0.

(i) Ye > 0, 3 a Borel partition & = {A1, -+, Ar} of X, s.t. diam(§) < € and
pw(0(A;) =0,i=1,-- k.

Proof. (i) Fix z € X, consider the map r — u(0B(x,r)). Since y is a probability
measure, u(0B(x,r)) > 0 for at most countable many r, which proves (i). (ii)
Ve > 0, by (i) we can find finite open balls {Bj,---, B} covering X with
dlam(Bz) < € and /.t(aBz) = 0. Take A; = By, Ay = By \ By, 7Ak =
B\ (BiUByU---By), then £ = {A;,--- , A} is a partition with diam(¢§) < e,
moreover, 0A; C U?zlaBj, hence u(0A4;) =0fori=1,--- k. O
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