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Compulsory Part

1. Let n ≥ 1.

(a) Show that 1 + z + z2 + · · ·+ zn = 1−zn+1

1−z if z 6= 1.

(b) Use part (a) to deduce Lagrange’s trigonometric identity:

1 + cos θ + cos 2θ + · · ·+ cosnθ =
1

2
+

sin(n+ 1
2
)θ

2 sin θ
2

when θ is not a multiple of 2π.

Solution.

(a) Note that

(1− z)(1 + z + z2 + · · ·+ zn) = 1 + z + z2 + · · ·+ zn − (z + z2 + z3 + · · ·+ zn+1)

= 1− zn+1

When z 6= 1, we divide both sides by 1− z to obtain the identity.

(b) Let z = eiθ, by part (a), when eiθ 6= 1, i.e. when θ is not a multiple of 2π, we have

1 + eiθ + (eiθ)2 + · · ·+ (eiθ)n =
1− (eiθ)n+1

1− eiθ
(1)

Now, notice that cos(kθ) = Re(eikθ) = Re[(eiθ)k]. Therefore, the real part of
Equation (1) is 1 + cos θ + cos 2θ + · · ·+ cosnθ. Moreover, the RHS is

1− ei(n+1)θ

1− eiθ
=
e−

iθ
2 (1− ei(n+1)θ)

e−
iθ
2 (1− eiθ)

=
e−

iθ
2 − ei(n+ 1

2
)θ

e−
iθ
2 − e iθ2

=

(
e−

iθ
2 − ei(n+ 1

2
)θ

2i

)/(
e−

iθ
2 − e iθ2
2i

)

= − 1

sin θ
2

e−
iθ
2 − ei(n+ 1

2
)θ

2i

=
i

2 sin θ
2

(e
−iθ
2 − ei(n+

1
2
)θ)

=
i

2 sin θ
2

(cos
θ

2
− i sin

θ

2
− cos(n+

1

2
)θ − i sin(n+

1

2
)θ)
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Its real part is 1
2

+
sin(n+ 1

2
)θ

2 sin θ
2

. This shows the required identity. J

2. Show that |z1 − z2| ≥ ||z1| − |z2|| for any z1, z2 ∈ C.

Solution. Note that

|z1 − z2|2 = (z1 − z2)(z1 − z2)
= |z1|2 + |z2|2 − z1z2 − z1z2
= |z1|2 + |z2|2 − 2 Re(z1z2)

≥ |z1|2 + |z2|2 − 2|z1| |z2|
= ||z1| − |z2||2

The result follows by taking square root on both sides. Notice that in calculation, we
applied Re(z1z2) ≤ |z1| |z2| = |z1| |z2|. J

3. Consider the function
T (z) =

az + b

cz + d
,

where ad− bc 6= 0. Show that

(a) limz→∞ T (z) =∞ if c = 0;

(b) limz→∞ T (z) = a
c

and limz→−d/c T (z) =∞ if c 6= 0.

Solution.

(a) If c = 0, then by assumption ad − bc 6= 0, we have a, d 6= 0. To see that
limz→∞ T (z) = ∞, we only need to check that limw→0

1
T ( 1

w
)

= 0. Note that
1

T ( 1
w
)

= dw
bw+a

, and b(0) + a = a 6= 0. Therefore, limw→0
1

T ( 1
w
)

= 0.

(b) limz→∞ T (z) = limw→0 T ( 1
w

) = limw→0
bw+a
dw+c

= a
c
, because c 6= 0.

limz→−d/c
1

T (z)
= limz→−d/c

cz+d
az+b

=
c(− d

c
)+d

a(− d
c
)+b

= 0, because a(−d
c
) + b = bc−ad

c
6= 0.

Therefore, we conclude that limz→−d/c T (z) =∞.

J

4. For the following functions defined on the whole complex plane, show that they are com-
plex differentiable at every point by computing the partial derivatives of their real and
imaginary parts and verifying the Cauchy-Riemann equations:

(a) f(z) = z2.

(b) f(z) = ez.

(Remark: Functions which are complex differentiable on the whole complex plane are
called entire functions.)
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Solution. (a) Let z = x+ iy with x, y ∈ R. Then,

f(z) = z2 = (x+ iy)2 = x2 − y2 + i(2xy).

The real part of f is u(x, y) = x2− y2 and the imaginary part of f is v(x, y) = 2xy.
Notice that the partial derivatives of u, v are

ux = 2x uy = −2y

vx = 2y vy = 2x

Therefore, ux = 2x = vy and uy = −2y = −vx. That is, f satisfies the Cauchy-
Riemann equations. Moreover, since all partial derivatives are continuous, f is com-
plex differentiable.

(b) f(z) = ex+iy = ex cos y + iex sin y. That is, u(x, y) = ex cos y and v(x, y) =
ex sin y. Note that

ux = ex cos y uy = −ex sin y

vx = ex sin y vy = ex cos y

Therefore, f satisfies the Cauchy-Riemann equations ux = vx and uy = −vx. Since
all partial derivatives are continuous, f is complex differentiable.

J

5. Consider the function f : C → C defined by f(z) = z̄. By considering the Cauchy-
Riemann equations, show that f ′(z) does not exist at any point.

Solution. Note that the real part of function f is u(x, y) = x and the imaginary part is
v(x, y) = −y. To check the Cauchy-Riemann equations, we need to calculate the partial
derivatives:

ux = 1 uy = 0

vx = 0 vy = −1

Therefore, one of the Cauchy-Riemann equations ux = vy fails for any point (x0, y0) in
the complex plane, hence f ′(z) does not exist at any point.

J

Optional Part

1. Show, by definition, that

(a) ez1+z2 = ez1 · ez2 for any z1, z2 ∈ C;

(b) log(z1z2) = log z1 + log z2 for any z1, z2 ∈ C \ {0}.
(c) sin2 z + cos2 z = 1 for any z ∈ C.
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Solution. (a) Let z1 = x1 + iy1 and z2 = x2 + iy2 with x1, x2, y1, y2 ∈ R. Then,

ez1+z2 = e(x1+x2)+i(y1+y2)

= ex1+x2(cos(y1 + y2) + i sin(y1 + y2))

= ex1+x2(cos y1 cos y2 − sin y1 sin y2 + i sin y1 cos y2 + i cos y1 sin y2)

= ex1+x2(cos y1 + i sin y1)(cos y2 + i sin y2)

= ez1 · ez2

(b) Once you chose a branch for the log function, you can find some z1, z2 ∈ C \ {0}
such that

log(z1z2) 6= log z1 + log z2.

For example, consider the principal branch −π < Arg z ≤ π. For z1 = z2 = −1,
we have log z1 = log z2 = iπ, but log(z1z2) = 0 6= log z1 + log z2.
On the other hand, if we first fix z1, z2 ∈ C \ {0}, then we can always choose a
branch of log such that

log(z1z2) = log z1 + log z2. (2)

For our discussion, we may clarify some terminologies. Let z = reiθ with θ ∈
(0, 2π]. We say that z belongs to

quadrant I if 0 < θ ≤ π
2
; quadrant II if π

2
< θ ≤ π;

quadrant III if π < θ ≤ 3π
2

; quadrant IV if 3π
2
< θ ≤ 2π.

If we chose the principal branch−π < arg z ≤ π for the log function, then Equation
(2) holds when z1 is in quadrants I and II, together with z2 in quadrants III and IV.
To verify it, note that

log z1 = log |z1|+ i arg z1 with 0 < arg z1 ≤ π,
log z2 = log |z2|+ i arg z2 with − π < arg z2 ≤ 0.

Hence,
z1z2 = |z1|ei arg z1|z2|ei arg z2 = |z1z2|ei(arg z1+arg z2)

with−π < arg z1 +arg z2 ≤ π, which is in our chosen branch. Therefore, Equation
(2) holds. Similarly, the table below shows for different branches of log function,
when z1, z2 will satisfy Equation (2).

z1

z2 I II III IV

I 3 5 3 3

II 5 5 3 3

III 3 3 5 5

IV 3 3 5 3

(a) Branch: −π < arg z ≤ π

z1

z2 I II III IV

I 3 3 3 5

II 3 3 5 5

III 3 5 5 5

IV 5 5 5 5

(b) Branch: 0 < arg z ≤ 2π
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z1

z2 I II III IV

I 3 3 5 3

II 3 5 5 3

III 5 5 5 3

IV 3 3 3 5

(c) Branch: −π
2 < arg z ≤ 3π

2

z1

z2 I II III IV

I 5 5 5 5

II 5 5 5 5

III 5 5 3 5

IV 5 5 5 5

(d) Branch: π < arg z ≤ 3π

Therefore, for any nonzero fixed z1, z2, we can choose a proper branch of log func-
tion such that Equation (2) holds.

(c) Note that

sin2 z = (
eiz − e−iz

2i
)2 =

e2iz + e−2iz − 2

−4
= −e

2iz + e−2iz

4
+

1

2

cos2 z = (
eiz + e−iz

2
)2 =

e2iz + e−2iz + 2

4
=
e2iz + e−2iz

4
+

1

2

Therefore, sin2 z + cos2 z = 1 for any z ∈ C
J

2. Suppose limz→z0 f(z) = 0 and there exists a positive real number M such that |g(z)| ≤
M for all z in some neighborhood of z0. Show that limz→z0 f(z)g(z) = 0.

Solution. By assumption, there is some δ > 0 such that

|g(z)| ≤M whenever |z − z0| < δ.

Let ε > 0. Since limz→z0 f(z) = 0, there is some δ1 > 0 such that

|f(z)| < ε

M
whenever 0 < |z − z0| < δ1.

Therefore, if 0 < |z − z0| < min{δ, δ1}, then

|f(z)g(z)| < ε

M
·M = ε.

This shows limz→z0 f(z)g(z) = 0. J

3. Show that the following are entire functions by computing the partial derivatives of their
real and imaginary parts and verifying the Cauchy-Riemann equations:

(a) f(z) = sin z.

(b) f(z) = cos z.

(c) f(z) = sinh z := ez−e−z
2

.

(d) f(z) = cosh z := ez+e−z

2
.
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Solution. Let z = x+ iy, where x, y ∈ R

(a)

f(z) = sin z =
eiz − e−iz

2i

=
eixe−y − e−ixey

2i

=
1

2i
(e−y(cosx+ i sinx)− ey(cosx− i sinx))

=
1

2
(−ie−y cosx+ e−y sinx+ iey cosx+ ey sinx)

Therefore, u(x, y) = 1
2
(ey + e−y) sinx and v(x, y) = 1

2
(ey − e−y) cosx. Note that

ux =
1

2
(ey + e−y) cosx uy =

1

2
(ey − e−y) sinx

vx = −1

2
(ey − e−y) sinx vy =

1

2
(ey + e−y) cosx

Clearly, the Cauchy-Riemann equations hold. Since the partial derivatives are con-
tinuous, the function f is complex differentiable.

(b) Similar to above, note that f(z) = eiz+e−iz

2
. The real part u(x, y) and the imaginary

part v(x, y) are

u(x, y) =
1

2
(ey + e−y) cosx

v(x, y) = −1

2
(ey − e−y) sinx

and the partial derivatives are

ux = −1

2
(ey + e−y) sinx uy =

1

2
(ey − e−y) cosx

vx = −1

2
(ey − e−y) cosx vy = −1

2
(ey + e−y) sinx

(c) For f(z) = sinh z = ez−e−z
2

, similar to the calculation in part (a), we have

u(x, y) =
1

2
(ex − e−x) cos y

v(x, y) =
1

2
(ex + e−x) sin y

and the partial derivatives are

ux =
1

2
(ex + e−x) cos y uy = −1

2
(ex − e−x) sin y

vx =
1

2
(ex − e−x) sin y vy =

1

2
(ex + e−x) cos y
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(d) For f(z) = cosh(z) = ez+e−z

2
, similar to the calculation in part (a), we have

u(x, y) =
1

2
(ex + e−x) cos y

v(x, y) =
1

2
(ex − e−x) sin y

and the partial derivatives are

ux =
1

2
(ex − e−x) cos y uy = −1

2
(ex + e−x) sin y

vx =
1

2
(ex + e−x) sin y vy =

1

2
(ex − e−x) cos y

J

4. Let f be a function on a domain D ⊂ C such that both f and f̄ are analytic. Show that f
must be a constant function.

Solution. Assume f(z) = u(x, y) + iv(x, y), then f̄ = u(x, y)− iv(x, y).

By the Cauchy-Riemann equations for the function f , we have

ux = vy and uy = −vx.

For the function f̄ , we have

ux = −vy and uy = vx.

These yield ux = vy = 0 and uy = vx = 0. Therefore, both u, v, and hence the function
f are constant functions. J


