Solution to Assignment 8

Ex 3. (p. 162) See Tutorial 10.

Ex 5. (p. 162) (a) For any $h \in \mathbb{R}$,

$$
\widehat{f}(\xi+h) - \widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \Big(e^{-2\pi i (\xi+h)x} - e^{-2\pi i \xi x} \Big) dx.
$$

Since f is of moderate decrease, for any $\epsilon > 0$, there exists a $N = N(\epsilon)$ such that $\int_{|x| \geq N} |f| dx < \epsilon/4$, and then there exists a $\delta = \frac{\epsilon}{4\pi N}$ $4\pi N \int_{-\infty}^{\infty} |f(x)| dx$ such that

$$
\left|\widehat{f}(\xi+h) - \widehat{f}(\xi)\right| \le \int_{|x| \le N} + \int_{|x| \ge N} |f(x)| \left| e^{-2\pi i (\xi+h)x} - e^{-2\pi i \xi x} \right| dx
$$

<
$$
< 2\pi h N \int_{-\infty}^{\infty} |f(x)| dx + \frac{\epsilon}{2} < \epsilon.
$$

This implies that \hat{f} is continuous.

Note that by changing of variables, one has that

$$
\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x - \frac{1}{2\xi}) e^{-2\pi i \xi (x - \frac{1}{2\xi})} dx = -\int_{-\infty}^{\infty} f(x - \frac{1}{2\xi}) e^{-2\pi i \xi x} dx.
$$

Therefore,

$$
|\widehat{f}(\xi)| = \left| \frac{1}{2} \int_{-\infty}^{\infty} \left(f(x) - f(x - \frac{1}{2\xi}) \right) e^{-2\pi i \xi x} dx \right|,
$$

$$
\leq \frac{1}{2} \int_{-\infty}^{\infty} \left| f(x) - f(x - \frac{1}{2\xi}) \right| dx.
$$

Since for moderately decreasing functions, $\int_{-\infty}^{\infty} |f(x+h) - f(x)| dx \to 0$ as $h \to 0$, so does $\widehat{f}(\xi)$ as $\xi \to \pm \infty$.

(b) It is easy to verify the multiplication formula holds whenever $f, g \in \mathcal{M}(\mathbb{R})$ since $F(x, y) := f(x)g(y)e^{-2\pi ixy}$ satisfies $|F(x, y)| \leq \frac{C}{(1+x^2)(1+y^2)}$. Hence, by $\widehat{f}(\xi) \equiv 0$, we have \int^{∞}

$$
\int_{-\infty}^{\infty} f(x)\hat{g}(x) dx = \int_{-\infty}^{\infty} \hat{f}(\xi)g(\xi)d\xi = 0 \text{ for all } g \in \mathcal{M}(\mathbb{R}).
$$

For $x_0 = 0$, take $g(x) = e^{-\pi \delta x^2} \in \mathcal{S}(\mathbb{R})$, we have $\int_{-\infty}^{\infty} f(x)K_{\delta}(x)dx = 0$, where $K_{\delta}(x) = \delta^{-1/2} e^{-\pi x^2 \delta}$. Since K_{δ} s a family of good kernel, $f(0) = \lim_{\delta \to 0+} \int_{-\infty}^{\infty} f(x) K_{\delta}(x) dx =$ 0. For any $x_0 \in \mathbb{R}$, just consider $f_{x_0}(x) = f(x - x_0)$ instead of $f(x)$ and repeat the same argument. \square

Ex 9. (p. 163) Define $g(\xi) := \chi_{[-R,R]}(\xi)(1 - \frac{|\xi|}{R})$ $\frac{|\xi|}{R}$, $f_{-x}(t) := f(t+x)$ where χ is the characteristic function. One can check that (I omit the calculations..): $\hat{g}(t) = \mathcal{F}_R(t)$, and $f_{-x}(\xi) = f(\xi)e^{2\pi ix\xi}$. Therefore, by the multiplication formula, we have

$$
\int_{R}^{R} (1 - \frac{|\xi|}{R}) \widehat{f}(\xi) e^{2\pi ix\xi} d\xi = \int_{-\infty}^{\infty} g(t) f(t + x) dt
$$

$$
= \int_{-\infty}^{\infty} g(-t) f(-t + x) d(-t) = (f * \mathcal{F}_R)(x.)
$$

(In the future you may learn if $h_1, h_2 \in \mathcal{M}(\mathbb{R})$ and $\int h_1 e^{2\pi ix\xi} d\xi = h_2(x)$, then $\widehat{h_2} = h_1$. So the above inequality is actually the Fourier inversion for $f * \mathcal{F}$.)

Since \mathcal{F}_R is nonnegative, to prove \mathcal{F}_R is a family of good kernels, it suffices to prove

$$
\int_{-\infty}^{\infty} \mathcal{F}_R(t)dt = 1 \text{ and } \lim_{R \to +\infty} \int_{|t| \ge \delta} \mathcal{F}_R(t)dt = 0 \text{ for any } \delta > 0.
$$

Note that $\widehat{g}(t) = \mathcal{F}_R(t), g, \mathcal{F}_R \in \mathcal{M}(\mathbb{R})$, and thus it follows the Fourier inversion that

$$
\int_{-\infty}^{\infty} \mathcal{F}_R(t)dt = \int_{-\infty}^{\infty} \mathcal{F}_R(t)e^{2\pi i 0t}dt = g(0) = 1.
$$

Moreover, for any $\delta > 0$,

$$
\int_{|t| \ge \delta} \mathcal{F}_R(t) \, dt \le R \int_{|t| \ge \delta} \frac{1}{\pi R^2 t^2} dt = \frac{2}{\pi R \delta} \to 0 \quad \text{as} \quad R \to \infty.
$$

Therefore, \mathcal{F}_R is a family of good kernels.