Solution to Assignment 7

Ex 11. (p. 124) See Tutorial 8.

Ex 12. (p. 124) Let = 27z and 7 = 47%t. Then
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Ex 1. (p. 161) (a) Treating f as a function on [—L/2, L/2], the Fourier coeffi-
cients are
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By the fact that f is supported on [—M, M| and M < L/2, the Fourier transform of

f is given by fA(S) = f_LZQ (z)e 2™ dx and hence

As f is of moderate decrease,
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This implies that
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where § = 1/L.

(b) For any € > 0, using the fact that F' is of moderate decrease, we can find some

large N so that
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Finally by the definition of Riemann integral on [—N, N], we can choose sufficiently

small § so that
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Combining all the above estimates, we obtain for ¢ sufficiently small,
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This completes the proof.

(c) Let F(¢) = f({)e2”‘”5, then F is of moderate decrease. Using the results in
(a) and (b), we obtain easily that
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