Solution to Assignment 6

Ex 4. (p. 122) (a) Suppose that the strong version of isoperimetric inequality
holds. Given a 2m-periodic C' function y(s), and satisfies fo%y(s) ds = 0, we can
define for a curve T' by the parametrization v(s) = (z(s),y(s)),s € [0,2n], where
2'(s) = —y(s). Then fo%y(s) ds = 0 ensures I' is a closed curve. Let [ be its length
and A be the area of its surrounded part.

It follows the isoperimetric inequality that
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where the equality holds if and only if T’ is a circle, i.e. y = a+ rsin(s + ¢) for
some a € R, r >0, ¢ € [0,27). Since fo ) ds = 0, one has a = 0. Therefore,
y(s) = Asins + Bcos s, for some constants A B

(b)Suppose that Wirtinger’s inequality holds. Consider a C’1 curve of length 27
parametrized by v(s) = (x(s),y(s)), s € [0,27] and fo ) ds = 0, otherwise
consider the curve
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Therefore,

510 = (5500 00— o | 2”y<s>d3),

where [ is the length of v and change the variable of 4 as arc-length. Then it suffices
to prove that if A is the area of the surrounded part,

T—A>0.

Since s is the arc-length variable, \/2/(s)2 4+ y/(s)2 = 1. So
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where in the last row, the Wirtinger’s inequality is used. The equality holds if and

only if y(s) = Asins + Bcoss for some constants A, B and 2/(s) + y(s) = 0. It is
easy to check it is equivalent to that (s) is a circle. O
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Ex 5. (p. 122) See Tutorial 6.

Ex 10a (p.123-124). Since {£:} is equidistributed in [0,1), by the Weyl's criterion,
for k0,
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uniformly in . Hence, by the linearity of the limit, for all trizonometric polynomial
P(z) with [ P(z)dz =0
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uniformly in ®. Now for any ¢ = 0 and given any continuous function f with
[ fiz)dz, we can find trigonometric polynomial P such that [ P(z)dr = 0
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Taking limit in N, we have
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uniformly in . But ¢ is arbitrary, we have limp_, %E:r_i flr+£&;) = 0. This
completes the proof.

Ex 10(b). For any ¢ > (0 and any Riemann integrable functions f, by Lemma 3.2
in Chapter 2 of the book, there exists a continnous function g such that

1
sup |g(z)| < sup |f(z)] and f |f(z) — o(x)ldz <.
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Define h(r) = g(z)— [ g(r)dr. Then h satisfies condition in (a), so that £ 37 h(z+
£z) — 0 uniformly in r. Hence, this means that for N large
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< ¢ uniformly in z.

Let M = sup, gy |f(z)|, note that [ fiz)dz = 0, we have
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This establishes the result.



