
Solution to Assignment 3

9(a) (p.61) It is easy to see if f̂(0) = b−a
2π

. If n 6= 0,

f̂(n) =
1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

∫ b

a

e−inxdx =
e−ina − e−inb

2πin
.

Hence,

f(x) ∼ b− a
2π

+
∑
n6=0

e−ina − e−inb

2πin
einx.

9(b). The Fourier series does not converge absolutely means that we need to show∑
n6=0

∣∣∣∣e−ina − e−inb2πin
einx
∣∣∣∣ =∞.

Denote θ0 = b−a
2

,

∑
n6=0

∣∣∣∣e−ina − e−inb2πin
einx
∣∣∣∣ =
∑
n6=0

∣∣∣∣e−in(b+a/2 e
in(b−a/2 − e−in(b−a/2

2πin

∣∣∣∣
=
∑
n6=0

∣∣∣∣sinnθ0

πn

∣∣∣∣ . (0.1)

Note that from the assumption, θ0 < π. Hence, we can find some c > 0 so that

π − 2 sin−1 c

θ0

> 1.

This means for all integers k ≥ 1, the length of the intervals (πk+sin−1 c
θ0

, π(k+1)−sin−1 c
θ0

)

is equal to π−2 sin−1 c
θ0

> 1. This implies there exists some integer nk such that

nkθ0 ∈ (πk + sin−1 c, π(k + 1)− sin−1 c).

This means that nk ≤ π(k+1)−sin−1 c
θ0

≤ π(k+1)
θ0

and | sinnkθ0| ≥ c. Hence,

(0.1) ≥
∑
n>0

∣∣∣∣sinnθ0

πn

∣∣∣∣ ≥ ∞∑
k=1

∣∣∣∣sinnkθ0

πnk

∣∣∣∣ ≥ ∞∑
k=1

c

π π(k+1)
θ0

=
θ0

cπ2

∞∑
k=1

1

k + 1
.

As the series
∑∞

k=1
1

k+1
=∞, the proof is completed.

Remark. Drawing a graph of y = | sinx| helps visualizing the argument.
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9(c). Note that

e−ina − e−inb

2πin
einx +

e−i(−n)a − e−i(−n)b

2πi(−n)
ei(−n)x

=
1

2πin

[
(ein(x−a) − e−in(x−a))− (ein(x−b) − e−in(x−b))

]
=

1

πn
(sinn(x− a)− sinn(x− b))

The Fourier series of f becomes

b− a
2π

+
∑
n≥1

1

πn
(sinn(x− a)− sinn(x− b)).

By the Dirichlet’s Test (Ex 7b (p.60)),
∑

n≥1
sinn(x−a)

n
and

∑
n≥1

sinn(x−b)
n

converge

for all x. Hence the Fourier series converges at every point x.

If a = −π and b = π, then f̂(n) = 0 for n 6= 0, then the Fourier series of f is
b−a
2π
≡ 1 is equal to f itself.

15 (p.63). Let ω = eix, then Dk(x) =
∑n=k

n=−k(e
ix)n = ω−k−ωk+1

1−ω .

NFN(x) =
N−1∑
k=0

Dk(x)

=
N−1∑
k=0

ω−k − ωk+1

1− ω

=
ω

(1− ω)2
(ωN + ω−N − 2)

=
1

(ω1/2 − ω−1/2)2
(ωN/2 − ω−N/2)2

=
sin2(Nx/2)

sin2(x/2)
.

Hence, FN(x) = 1
N

sin2(Nx/2)

sin2(x/2)
.

17(a) (p.63) Note that Pr(θ) is an even function of θ,

1

2π

∫ 0

−π
Pr(θ)dθ =

1

2π

∫ π

0

Pr(θ)dθ =
1

2
.

We then decompose Arf(θ) as

Arf(θ) =
1

2π

∫ 0

−π
f(θ − ϕ)Pr(ϕ)dϕ+

1

2π

∫ π

0

f(θ − ϕ)Pr(ϕ)dϕ.

2



We consider the second term. Using standard good kernel argument with Pr(θ)

is a good kernel (Lemma 5.5 p.55), for any ε > 0, there exists δ > 0 such that

|f(θ−ϕ)− f(θ−)| < ε. Given this δ > 0, there exists r0 such that for all 1 > r ≥ r0,∫ π

δ

Pr(ϕ)dϕ < ε.

With Pr(θ) is non-negative and f is bounded on T (since f is Riemann integrable),

we see that∣∣∣∣ 1

2π

∫ π

0

f(θ − ϕ)Pr(ϕ)dϕ− f(θ−)

2

∣∣∣∣ =

∣∣∣∣ 1

2π

∫ π

0

(f(θ − ϕ)− f(θ−))Pr(ϕ)dϕ

∣∣∣∣
≤ 1

2π

∫ δ

0

|f(θ − ϕ)− f(θ−)|Pr(ϕ)dϕ

+
1

2π

∫ π

δ

|f(θ − ϕ)− f(θ−)|Pr(ϕ)dϕ

<
1

2π

∫ δ

0

εPr(ϕ)dϕ+
2B

2π

∫ π

δ

Pr(ϕ)dϕ

<ε+
B

π
ε,

where B is the bound of f . This shows

lim
r→1

1

2π

∫ π

0

f(θ − ϕ)Pr(ϕ)dϕ =
f(θ−)

2
.

Similarly,

lim
r→1

1

2π

∫ 0

−π
f(θ − ϕ)Pr(ϕ)dϕ =

f(θ+)

2
.

Hence, limr→1Arf(θ) = f(θ+)+f(θ−)
2

.

17(b). Since the Fejér kernel is also a good kernel and it is an even function of

θ, we can prove the result by applying the same procedure as in (a). We therefore

omit the detail.
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