THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2018-19 Homework 6 Due Date: 25th October 2018

Compulsory Part

- 1. Prove the following identities in an arbitrary ring R:
 - (a) (-a)(-b) = ab for any $a, b \in R$.
 - (b) (-a)b = a(-b) = -(ab) for any $a, b \in R$.
- 2. Show that $a^2 b^2 = (a + b)(a b)$ for all a, b in a ring R if and only if R is commutative.
- 3. A ring R such that $a^2 = a$ for any $a \in R$ is called a **Boolean ring**. Show that every Boolean ring is commutative.

Optional Part

1. Let R be a commutative ring. Define the circle binary operation \circ on R as follows:

$$a \circ b = a + b - ab$$
, $a, b \in R$.

Show that the circle operation is associative, and that $0 \circ a = a$ for all $a \in R$. (Here, 0 denotes the additive identity element of R.)

2. Let R be a commutative ring. Show that the **binomial theorem** holds, i.e.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

for any $a, b \in R$ and for any positive integer n.

- 3. Let R be the set of all real-valued functions f on \mathbb{R} such that f(0) = 0. Let + and \cdot be the usual addition and multiplication operations for functions.
 - (a) Show that $f + g \in R$ for all $f, g \in R$.
 - (b) Show that $f \cdot g \in R$ for all $f, g \in R$.
 - (c) With respect to +, what is the additive identity element of R, if it exists?
 - (d) With respect to \cdot , what is the multiplicative identity element of R, if it exists?
- 4. Let X be a set, and R is the set of subsets of X. In each of the following cases, decide whether the given operations in R form a ring:
 - (a) For $A, B \in R$, we define $A + B := A \cup B$ and $A \cdot B := A \cap B$.
 - (b) For $A, B \in R$, we define $A + B := (A \cup B) \setminus (A \cap B)$ and $A \cdot B := A \cap B$.