THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050A Mathematical Analysis I (Fall 2021) Suggested Solution of Homework 1

If you find any errors or typos, please email me at yzwang@math.cuhk.edu.hk 1. (2 points) Let $S = \left\{ 1 + \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$, find $\sup S$ and $\inf S$. Justify it.

Solution: For even natural number n, we have that

$$1 \le 1 + \frac{(-1)^n}{n} = 1 + \frac{1}{n} \le \frac{3}{2}.$$

For odd natural number n, we have that

$$0 \le 1 + \frac{(-1)^n}{n} = 1 - \frac{1}{n} \le 1.$$

In sum, we can conclude that for all $n \in \mathbb{N}$,

$$0 \le 1 + \frac{(-1)^n}{n} \le \frac{3}{2}.$$

Then $\frac{3}{2}$ is an upper bound of S. Let u be an upper bound of S. Then we have that $u \ge 1 + \frac{(-1)^n}{n} = \frac{3}{2}$ when n = 2. It follows that $\sup S = \frac{3}{2}$.

Similarly, from previous computation we know that 0 is a lower bound of S. Let v be a lower bound of S. Then we have that $v \leq 1 + \frac{(-1)^n}{n} = 0$ when n = 1. It follows that $\inf S = 0$.

2. (2 points) Let S be a non-empty subset of \mathbb{R} . Show that $u \in \mathbb{R}$ is an upper bound of S if and only if the following holds: For any $t \in \mathbb{R}$, t > u implies $t \notin S$.

Solution:

- (a) Suppose that $u \in \mathbb{R}$ is an upper bound of S. Let $t \in \mathbb{R}$. We assume that $t \in S$, then by definition of an upper bound, we have that $t \leq u$. Hence t > u implies $t \notin S$ for any $t \in \mathbb{R}$.
- (b) Suppose that for any $t \in \mathbb{R}$, t > u implies $t \notin S$. Then $t \in S$ implies $t \leq u$ for any $t \in \mathbb{R}$. Therefor we conclude that u is an upper bound of S.

3. (3 points) Show that if A, B are bounded subsets of \mathbb{R} , then $A \cup B$ is a bounded subset and $\sup (A \cup B) = \max \{ \sup A, \sup B \}$.

Solution: Since A, B are bounded, we can find $a_1, a_2, b_1, b_2 \in \mathbb{R}$ such that for any $a \in A$ and $b \in B$,

 $a_1 \le a \le a_2, \quad b_1 \le b \le b_2.$

It follows that for any $x \in A \cup B$,

$$\min\{a_1, b_1\} \le x \le \max\{a_2, b_2\}.$$

Therefore $A \cup B$ is bounded.

Let $a_2 = \sup A$ and $b_2 = \sup B$ in previous computation. Then we can conclude that $A \cup B$ is bounded above by max {sup A, sup B}. Suppose $A \cup B$ is bounded above by some $u \in \mathbb{R}$. Then for any $a \in A \subset A \cup B$ and $b \in B \subset A \cup B$,

$$a \leq u$$
 and $b \leq u$.

Hence A, B are both bounded above by u. It follows that $\sup A \leq u$ and $\sup B \leq u$. Therefore, $\max \{\sup A, \sup B\} \leq u$, which implies that

 $\sup (A \cup B) = \max \{\sup A, \sup B\}.$

4. (3 points) Let S be a bounded subset of ℝ and S₀ be a non-empty subset of S. Show that

$$\inf S \le \inf S_0 \le \sup S_0 \le \sup S.$$

Solution: Since S_0 is non-empty, by picking $a \in S_0$, we have that $\inf S_0 \leq a \leq \sup S_0$. For any $s \in S_0$, since $S_0 \subset S$, we have that $s \in S$ and $\inf S \leq s \leq \sup S$.

Hence S_0 is bounded above by sup S and bounded below by S. From the definition of sup S_0 and S_0 , we can conclude that

 $\inf S \le \inf S_0 \le \sup S_0 \le \sup S.$