THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2019-20 Tutorial 7 Date: 4th November 2019

Problems:

1. Under the addition and multiplication as the operations in \mathbb{C} , determine whether the following set is a ring or a field: $A = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}, B = \{a + be^{2\pi i/3} : a, b \in \mathbb{Z}\},\$ $C = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}.$

Solution. Clearly A, B, and C are groups under $+$. For multiplication, it is well-defined in A , B and C . For B , note that

$$
(a + be^{2\pi i/3})(c + de^{2\pi i/3}) = ab + cde^{4\pi i/3} + (ac + bd)e^{2\pi i/3} = ab - cd + (ac + bd - cd)e^{2\pi i/3}
$$

since $e^{4\pi i/3} = -1 - e^{2\pi i/3}$. Next, by direct checking the multiplication in A, B and C are associative and satisfy the distributive law. The number 1 plays the role of unity in A, B and C . Note also that A , B and C are (commutative) rings.

Clearly A is not a field because, for example, 2 does not have multiplicative inverse $(2(a + b\sqrt{3}) = 1 \Rightarrow a = 1/2 \notin \mathbb{Z}$). But A is an integral domain because

$$
(a+b\sqrt{3})(c+d\sqrt{3}) = 0 \Rightarrow (a-b\sqrt{3})(a+b\sqrt{3})(c+d\sqrt{3})(c-d\sqrt{3}) \Rightarrow a^2 = 3b^2 \text{ or } c^2 = 3d^2
$$

which says that $a = b = 0$ or $c = d = 0$.

B is not a field as $4e^{2\pi i/3}$ has no multiplicative inverse. Suppose $4e^{2\pi i/3}$ has a multiplicative inverse, we then have

$$
4e^{2\pi i/3}(a+be^{2\pi i/3}) = 1 \Rightarrow 2e^{2\pi i/3}(2a+2be^{2\pi i/3}) = 1 \xrightarrow{e^{2\pi i/3} = -\frac{1}{2} + \frac{\sqrt{3}i}{2}} 2((2a-b)^2 + 3b^2) = 1
$$

which is absurd. But B is an integral domain because

$$
(a + be^{2\pi i/3})(c + de^{2\pi i/3}) = 0
$$

\n
$$
\Rightarrow (a - b/2 - b\sqrt{3}i/2)(a - b/2 + b\sqrt{3}i/2)(c - d/2 - d\sqrt{3}i/2)(c - d/2 + d\sqrt{3}i/2) = 0
$$

\n
$$
\Rightarrow (2a - b)^2 + 3b^2 = 0 \text{ or } (2c - d)^2 + 3d^2 = 0
$$

which says that $a = b = 0$ or $c = d = 0$.

Let $a + b$ √ $\sqrt{3} \neq 0$. Then $a^2 - 3b^2 \neq 0$. The multiplicative inverse of $a + b$ √ 0. Then $a^2 - 3b^2 \neq 0$. The multiplicative inverse of $a + b\sqrt{3}$ is given by a $\frac{a}{a^2-3b^2} - \frac{b}{a^2-}$ $\frac{b}{a^2-3b^2}\sqrt{3}$. Thus C is a field.

 \blacktriangleleft

2. Find all the units in the indicated rings.

- (a) $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}\$ (b) $\mathbb{Z}[\sqrt{2}]$ $\overline{-5}$ = {a + b} $\sqrt{-5}$: $a, b \in \mathbb{Z}$ (c) $\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}\$ (d) $M(2,\mathbb{Z})$ (e) \mathbb{Z}_{12}
- **Solution.** (a) If $(a+bi)(c+di) = 1$, then $(a^2+b^2)(c^2+d^2) = 1$ by taking the modulus. Since $a, b, c, d \in \mathbb{Z}$, we must have $a^2 + b^2 = 1$. This suggests that $1, -1, i$, and $-i$ are the only units in $\mathbb{Z}[i]$.
- (b) If $(a+b)$ √ $\overline{-5}(c+d$ √ $\overline{-5}$) = 1, then $(a^2 + 5b^2)(c^2 + 5d^2)$ = 1 by taking the modulus. Since $a, b, c, d \in \mathbb{Z}$, we must have $a^2 + 5b^2 = 1$. This suggests that 1 and -1 are the only units in $\mathbb{Z}[\sqrt{-5}]$.
- (c) For non-zero rational numbers $a, b, a + bi$ has the inverse $\frac{a}{a^2+b^2} \frac{b}{a^2+b^2}$ $\frac{b}{a^2+b^2}i$. So every non-zero element in $\mathbb{Q}[i]$ is a unit.
- (d) The inverse of a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. So the inverse exists and is an integer matrix if and only if the determinant is ± 1 . It follows that all such matrices make up the units of $M(2, \mathbb{Z})$. In other words, the units in $M(2, \mathbb{Z})$ form the set $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2, \mathbb{Z}) : ad - bc = \pm 1 \right\}$.
- (e) Suppose that $xy \equiv 1 \pmod{12}$. $12|(xy-1)$ implies that x and y are both odd and both x and y are not divisible by 3. By direct checking, one gets $\{1, 5, 7, 11\}$ are the only units in \mathbb{Z}_{12} . In fact $1^2 \equiv 5^2 \equiv 7^2 \equiv 11^2 \equiv 1 \pmod{12}$.
- 3. Show that the ring $\mathbb{Z}[\sqrt{2}]$ $[2] = \{a + b\}$ $\sqrt{2}$: $a, b \in \mathbb{Z}$ has infinitely many units.

Solution. Consider $x = 1 + \sqrt{2}$. This x has the inverse $-1 + \sqrt{2}$, so it is a unit. We immediately check that all x^n where n is a positive integer are different units in $\mathbb{Z}[\sqrt{2}]$ (as $\{x^n\}$ is strictly increasing).

- 4. Let R be a ring with $1 \neq 0$. Let $a, b \in R$ such that $ab = 1$.
	- (a) Prove that if a is not a zero divisor, then $ba = 1$.
	- (b) Prove that if b is not a zero divisor, then $ba = 1$.

 \blacktriangleleft

 \blacktriangleleft

Solution. (a) Suppose a is not a zero divisor.

$$
(ab - 1)a = aba - a = a(ba - 1) = 0
$$

so $ba = 1$ as a is not a zero divisor.

(b) Suppose b is not a zero divisor.

$$
b(ab - 1) = bab - b = (ba - 1)b = 0
$$

so $ba = 1$ as b is not a zero divisor.

5. Prove that every non-zero element in a finite ring is either a unit or a zero divisor.

Solution. Let $a \in R$ and consider the map on R given by $x \mapsto ax$. If this map is injective then it has to be surjective, because R is finite. Hence, $1 = ax$ for some $x \in R$ and a is a unit. If the map is not injective then there are $u, v \in R$, with $u \neq v$, such that $au = av$. But then $a(u - v) = 0$ and $u - v \neq 0$ and so a is a zero divisor.

6. True or false: every non-zero element in a ring is either a unit or a zero divisor.

Solution. False. Consider \mathbb{Z} . Then 2 is neither a zero-divisor nor a unit.

Optional Part

1. Let R be a ring and $a, b \in R$. Show that $1 - ab$ is a unit in R if and only if $1 - ba$ is a unit in R.

Solution. It suffices to show that if $1 - ab$ is a unit in R then $1 - ba$ is a unit in R. Let u be the inverse for $1 - ab$. Then $1 + bua$ is the inverse of $1 - ba$. Indeed

$$
(1 - ba)(1 + bua) = 1 - ba + bua - babua = 1 - ba + b(1 - ab)ua = 1 - ba + ba = 1.
$$

2. Let R be a ring and assume that whenever $ab = ca$ for some elements $a, b, c \in R$, we have $b = c$. Then prove that R is a commutative ring.

Solution. Let x, y be arbitrary elements in R. We want to show that $xy = yx$. Consider the identity $y(xy) = (yx)y$. This can be written as $ab = ca$ if we put $a = y, b = xy, c =$ yx. It follows from the assumption that we have $b = c$. Equivalently, we have $xy = yx$. Thus R is a commutative ring.

 \blacktriangleleft