THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2019-20 Tutorial 7 Date: 4th November 2019

Problems:

Under the addition and multiplication as the operations in C, determine whether the following set is a ring or a field: A = {a + b√3 : a, b ∈ Z}, B = {a + be^{2πi/3} : a, b ∈ Z}, C = {a + b√3 : a, b ∈ Q}.

Solution. Clearly A, B, and C are groups under +. For multiplication, it is well-defined in A, B and C. For B, note that

$$(a+be^{2\pi i/3})(c+de^{2\pi i/3}) = ab+cde^{4\pi i/3} + (ac+bd)e^{2\pi i/3} = ab-cd + (ac+bd-cd)e^{2\pi i/3} = ab-cd + (ac+bd-cd)e^{2\pi i/3} + (ac+bd)e^{2\pi i/3} = ab-cd + (ac+bd-cd)e^{2\pi i/3} =$$

since $e^{4\pi i/3} = -1 - e^{2\pi i/3}$. Next, by direct checking the multiplication in A, B and C are associative and satisfy the distributive law. The number 1 plays the role of unity in A, B and C. Note also that A, B and C are (commutative) rings.

Clearly A is not a field because, for example, 2 does not have multiplicative inverse $(2(a + b\sqrt{3}) = 1 \Rightarrow a = 1/2 \notin \mathbb{Z})$. But A is an integral domain because

$$(a+b\sqrt{3})(c+d\sqrt{3}) = 0 \Rightarrow (a-b\sqrt{3})(a+b\sqrt{3})(c+d\sqrt{3})(c-d\sqrt{3}) \Rightarrow a^2 = 3b^2 \text{ or } c^2 = 3d^2$$

which says that a = b = 0 or c = d = 0.

B is not a field as $4e^{2\pi i/3}$ has no multiplicative inverse. Suppose $4e^{2\pi i/3}$ has a multiplicative inverse, we then have

$$4e^{2\pi i/3}(a+be^{2\pi i/3}) = 1 \Rightarrow 2e^{2\pi i/3}(2a+2be^{2\pi i/3}) = 1 \xrightarrow{\frac{e^{2\pi i/3} = -\frac{1}{2} + \frac{\sqrt{3}i}{2}}{2} 2\left((2a-b)^2 + 3b^2\right) = 1$$

which is absurd. But B is an integral domain because

$$\begin{aligned} &(a+be^{2\pi i/3})(c+de^{2\pi i/3})=0\\ \Rightarrow &(a-b/2-b\sqrt{3}i/2)(a-b/2+b\sqrt{3}i/2)(c-d/2-d\sqrt{3}i/2)(c-d/2+d\sqrt{3}i/2)=0\\ \Rightarrow &(2a-b)^2+3b^2=0 \text{ or }(2c-d)^2+3d^2=0 \end{aligned}$$

which says that a = b = 0 or c = d = 0.

Let $a + b\sqrt{3} \neq 0$. Then $a^2 - 3b^2 \neq 0$. The multiplicative inverse of $a + b\sqrt{3}$ is given by $\frac{a}{a^2 - 3b^2} - \frac{b}{a^2 - 3b^2}\sqrt{3}$. Thus C is a field.

2. Find all the units in the indicated rings.

- (a) $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ (b) $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}$ (c) $\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}$ (d) $M(2, \mathbb{Z})$
- (e) \mathbb{Z}_{12}
- **Solution.** (a) If (a+bi)(c+di) = 1, then $(a^2+b^2)(c^2+d^2) = 1$ by taking the modulus. Since $a, b, c, d \in \mathbb{Z}$, we must have $a^2 + b^2 = 1$. This suggests that 1, -1, i, and -i are the only units in $\mathbb{Z}[i]$.
- (b) If $(a+b\sqrt{-5})(c+d\sqrt{-5}) = 1$, then $(a^2+5b^2)(c^2+5d^2) = 1$ by taking the modulus. Since $a, b, c, d \in \mathbb{Z}$, we must have $a^2+5b^2 = 1$. This suggests that 1 and -1 are the only units in $\mathbb{Z}[\sqrt{-5}]$.
- (c) For non-zero rational numbers a, b, a + bi has the inverse $\frac{a}{a^2+b^2} \frac{b}{a^2+b^2}i$. So every non-zero element in $\mathbb{Q}[i]$ is a unit.
- (d) The inverse of a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. So the inverse exists and is an integer matrix if and only if the determinant is ± 1 . It follows that all such matrices make up the units of $M(2,\mathbb{Z})$. In other words, the units in $M(2,\mathbb{Z})$ form the set $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,\mathbb{Z}) : ad bc = \pm 1 \right\}$.
- (e) Suppose that xy ≡ 1 (mod 12). 12|(xy 1) implies that x and y are both odd and both x and y are not divisible by 3. By direct checking, one gets {1, 5, 7, 11} are the only units in Z₁₂. In fact 1² ≡ 5² ≡ 7² ≡ 11² ≡ 1 (mod 12).
- 3. Show that the ring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ has infinitely many units.

Solution. Consider $x = 1 + \sqrt{2}$. This x has the inverse $-1 + \sqrt{2}$, so it is a unit. We immediately check that all x^n where n is a positive integer are different units in $\mathbb{Z}[\sqrt{2}]$ (as $\{x^n\}$ is strictly increasing).

- 4. Let R be a ring with $1 \neq 0$. Let $a, b \in R$ such that ab = 1.
 - (a) Prove that if a is not a zero divisor, then ba = 1.
 - (b) Prove that if b is not a zero divisor, then ba = 1.

Solution. (a) Suppose *a* is not a zero divisor.

$$(ab-1)a = aba - a = a(ba - 1) = 0$$

so ba = 1 as a is not a zero divisor.

(b) Suppose *b* is not a zero divisor.

$$b(ab-1) = bab - b = (ba-1)b = 0$$

so ba = 1 as b is not a zero divisor.

5. Prove that every non-zero element in a finite ring is either a unit or a zero divisor.

Solution. Let $a \in R$ and consider the map on R given by $x \mapsto ax$. If this map is injective then it has to be surjective, because R is finite. Hence, 1 = ax for some $x \in R$ and a is a unit. If the map is not injective then there are $u, v \in R$, with $u \neq v$, such that au = av. But then a(u - v) = 0 and $u - v \neq 0$ and so a is a zero divisor.

6. True or false: every non-zero element in a ring is either a unit or a zero divisor.

Solution. False. Consider \mathbb{Z} . Then 2 is neither a zero-divisor nor a unit.

Optional Part

1. Let R be a ring and $a, b \in R$. Show that 1 - ab is a unit in R if and only if 1 - ba is a unit in R.

Solution. It suffices to show that if 1 - ab is a unit in R then 1 - ba is a unit in R. Let u be the inverse for 1 - ab. Then 1 + bua is the inverse of 1 - ba. Indeed

(1 - ba)(1 + bua) = 1 - ba + bua - babua = 1 - ba + b(1 - ab)ua = 1 - ba + ba = 1.

2. Let R be a ring and assume that whenever ab = ca for some elements $a, b, c \in R$, we have b = c. Then prove that R is a commutative ring.

Solution. Let x, y be arbitrary elements in R. We want to show that xy = yx. Consider the identity y(xy) = (yx)y. This can be written as ab = ca if we put a = y, b = xy, c = yx. It follows from the assumption that we have b = c. Equivalently, we have xy = yx. Thus R is a commutative ring.