THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2019-20 Tutorial 3 Date: 23rd September 2019

Problems:

1. Let G be a group and H a subgroup. Show that $C(H) = \{q \in G : qh = hq, \forall h \in H\}$ is a subgroup of G. This subgroup $C(H)$ is called the centralizer of H in G.

Solution. • Associativity follows from that in G .

- Clearly $e \in C(H)$.
- Let $x, y \in C(H)$, then for any $h \in H$,

$$
(xy)h = x(yh) \stackrel{\cdot}{\equiv} \stackrel{y \in C(H)}{\equiv} x(hy) = (xh)y \stackrel{\cdot}{\equiv} \stackrel{x \in C(H)}{\equiv} (hx)y = h(xy).
$$

So $xy \in C(H)$. So $C(H)$ is closed.

• When $x \in C(H)$, we have, for any $h \in H$,

$$
xh = hx \quad \Rightarrow \quad hx^{-1} = x^{-1}h.
$$

So $x^{-1} \in C(H)$.

For what H does $H \subset C(H)$ happen? Answer: H is abelain. Observe the converse is also true!

 \blacktriangleleft

2. Find all the subgroups of Klein 4-group.

Solution. Note that Klein 4-group = $\{(0,0), (0, 1), (1, 0), (1, 1)\}$. Clearly $\{(0, 0)\}$ and $\{(0, 0), (0, 1), (1, 0), (1, 1)\}\$ are trivial subgroups. One may check directly that

$$
\langle (0,1) \rangle = \{ (0,0), (0,1) \}, \langle (1,0) \rangle = \{ (0,0), (1,0) \}
$$

and

$$
\langle (1,1) \rangle = \{ (0,0), (1,1) \}
$$

are the proper subgroup. These are all the proper subgroups as any two of $(0, 1), (1, 0), (1, 1)$ can form the remaining one: $(0, 1) + (1, 0) = (1, 1), (1, 1) + (1, 0) = (1, 0)$ and $(1, 1) +$ $(1, 0) = (0, 1).$

 \blacktriangleleft

3. Write down the cyclic subgroup $\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$ of the group $GL(2, \mathbb{R})$.

Solution.

$$
\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}.
$$

4. Show that the alternating group A_n is nonabelian for $n \geq 4$.

Solution. Note that $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix}$ $\begin{pmatrix} 2 & 3 \end{pmatrix}$ is even. A_4 is not abelian since $(1 \t2 \t3) (2 \t3 \t4) = (1 \t2) (3 \t4) \neq (1 \t3) (2 \t4) = (2 \t3 \t4) (1 \t2 \t3).$

5. Show that a group with no proper nontrivial subgroups is cyclic.

Solution. Let G be a group with no proper nontrivial subgroups. If $G = \{e\}$, then G is of course cyclic. If $G \neq \{e\}$, then there is $a \in G$, such that $a \neq e$. We know that $\langle a \rangle$ is a subgroup of G and $\langle a \rangle \neq \{e\}$. Because G has no proper nontrivial subgroups, we must have $\langle a \rangle = G$, so G is indeed cyclic.

6. Show that a finite group is never a union of two of its proper subgroups, that is, for any $G, G \neq H_1 \cup H_2$ for some proper subgroups $H_1 < G$ and $H_2 < G$ with $H_1 \not\subset H_2$ and $H_2 \not\subset H_1$. Does the statement remain true if *two* is replaced by *three*?

Solution. Seeking a contradiction, we let H_1 and H_2 be two proper subgroups of G such that $H_1 \cup H_2 = G$. First of all, we have $H_1 \not\subset H_2$ and $H_2 \not\subset H_1$ for otherwise G is equal to its proper subgroup H_1 or H_2 . So there are two elements $a \in H_1$ but not in H_2 and $b \in H_2$ but not in H_1 . As $H_1 \cup H_2 = G$, $ab \in H_1 \cup H_2$. It follows that $ab \in H_1$ or $ab \in H_2$. For the former one, it is absurd as (since a^{-1} and ab are both in H_1)

$$
b = a^{-1}(ab) \in H_1
$$

contradicting the choice of b; for the latter, it is also impossible. In each case we have a contradiction.

No. Note that the Klein 4-group is the union of $\langle (0, 1) \rangle$, $\langle (1, 0) \rangle$, and $\langle (1, 1) \rangle$.

 \blacktriangleleft

 \blacktriangleleft

 \blacktriangleleft

 \blacktriangleleft

Optional Part

1. Give an example of two groups G and H and a subgroup K of $G \times H$ such that K cannot be written as $K = G_1 \times H_1$, where G_1 and H_1 are subgroups of G and H, respectively.

Solution. Take $G = H = \mathbb{Z}_2$. Then we let $K = \{(g, g) : g \in \mathbb{Z}_2\} = \{(0, 0), (1, 1)\}.$ Suppose there are such G_1 and H_1 , we then have $0, 1 \in G_1$ and $0, 1 \in H_1$. It forces that $G_1 = H_1 = \mathbb{Z}_2$. However $G_1 \times H_1 = \mathbb{Z}_2 \times \mathbb{Z}_2 \neq K$, as $(0, 1) \in G_1 \times H_1$ but not in K.

 \blacktriangleleft