THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT 5120 Topics in Geometry 2021-22 Quiz 1 solutions 10th February 2022

- 1. (a) (1 point) Write $z = x + iy$ for real x, y, then breaking $z^2 = -9$ into real and imaginary parts gives $x^2 - y^2 = -9$ and $2xy = 0$. From the second equation we obtain x or y is 0. If $y = 0$, then $x^2 = -9$, which is impossible for real number x. So $x = 0$, and $y^2 = 9$. This gives $y = \pm 3$. So $z = \pm 3i$.
	- (b) (1 point) Same as before, breaking $z^2 = -2i$ into real and imaginary parts gives $x^2 - y^2 = 0$ and $2xy = -2$. From the first equation, we can factorize it into $(x + y)(x - y) = 0$, so $x = y$ or $x = -y$. If $x = y$, then plugging into the second equation yields $x^2 = -1$, which is impossible for real x. So $x = -y$, and we obtain $x^2 = 1$ and hence $x = 1$ or -1 . The corresponding y is -1 and 1 respectively. So $z = 1 - i$ or $-1 + i$. √
	- (c) (1 point) We use polar coordinates this time. $|-1 3i = 2$ so we can write −1 − √ $\overline{3}i = 2e^{\frac{4\pi i}{3}}$. Then writing $z = re^{i\theta}$, we have $r^2e^{2i\theta} = 2e^{\frac{4\pi i}{3}}$. So $r =$ √ 2 and $\theta = \frac{1}{2}$ $\frac{1}{2}(\frac{4\pi}{3}$ $\frac{4\pi}{3}$) = $\frac{2\pi}{3}$ or $\theta = \frac{1}{2}$ $\frac{1}{2}(\frac{4\pi}{3}+2\pi) = \frac{5\pi}{3}$. We have $z =$ √ $\overline{2}e^{i\frac{2\pi}{3}}= \frac{\sqrt{2}}{2}$ + √ 6 $\theta = \frac{1}{2}(\frac{4\pi}{3}) = \frac{2\pi}{3}$ or $\theta = \frac{1}{2}(\frac{4\pi}{3} + 2\pi) = \frac{5\pi}{3}$. We have $z = \sqrt{2}e^{i\frac{2\pi}{3}} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$ or $\overline{2}e^{i\frac{5\pi}{3}}=$ $\frac{\sqrt{2}}{2}$ $\frac{3}{-}$ $\frac{6}{\sqrt{6}}$ $\frac{\sqrt{6}}{2}i.$
- 2. (a) (1 point) We first perform a translate $z \mapsto z (1 + i)$ to translate $1 + i$ to the origin. Then perform rotation $z \mapsto e^{i\frac{\pi}{4}}$. And translate back $z \mapsto z + (1 + i)$. Therefore $T(z) = e^{i\frac{\pi}{4}}(z - (1+i)) + 1 + i = ($ $\frac{\sqrt{2}}{2}$ + $\frac{51}{\sqrt{2}}$ $\frac{\sqrt{2}}{2}i)z+1+(1-$ √ $2)i.$
	- (b) (1 point) In Cartesian coordinates, if we write $a = \alpha_1 + \alpha_2 i$, $b = \beta_1 + \beta_2 i$ and $z =$ $x+yi$, then $\text{Im}(az+b) = \alpha_1x-\alpha_2y+\beta_1+(\alpha_1y+\alpha_2x+\beta_2)i = \alpha_1y+\alpha_2x+\beta_2=0.$ This clearly defines a linear equation, which represents a straight line in the plane, as long as $a \neq 0$.
	- (c) (2 points) To determine the image of $S = \{z : \text{Im}(az + b) = 0\}$ under T, one can consider the inverse function of T , which exists because T is bijective. Making z the subject in the formula for $T(z)$, we obtain

$$
z = T^{-1}(w) = \frac{w - 1 - (1 - \sqrt{2})i}{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i}
$$

$$
= \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)w + 1 - \sqrt{2} + i = a'w + b
$$

So the image can be expressed as,

$$
T(S) = \{w = T(z) \in \mathbb{C} : \text{Im}(az + b) = 0\}
$$

= $\{w \in \mathbb{C} : \text{Im}(aT^{-1}(w) + b) = 0\}$
= $\{w \in \mathbb{C} : \text{Im}(a(a'w + b') + b) = 0\}$
= $\{w \in \mathbb{C} : \text{Im}(aa'w + ab' + b) = 0\}$

Which is again a straight line.

- 3. (a) (1 point) Taking $\theta = 0$ yields $R_0(z) = e^0 z = z$ is the identity map on \mathbb{C} . $R_{-\theta}$ is the inverse of R_{θ} , because $R_{\theta} \circ R_{-\theta}(z) = e^{i\theta} \cdot e^{-i\theta} z = z$ and likewise for $R_{-\theta} \circ R_{\theta}$. We also have $R_{\theta_1} \circ R_{\theta_2}(z) = e^{i\theta_1 + i\theta_2} z = e^{i(\theta_1 + \theta_2)} z = R_{\theta_1 + \theta_2}(z)$. So any compositions of the maps are again in the transformation group.
	- (b) (2 points) In order to check $f(z) = |z|$ is invariant. It suffices to check that $f(T(z)) = f(z)$ for any $z \in \mathbb{C}$ and $T \in G$. Check that for any z and θ ,

$$
f(R_{\theta}(z)) = f(e^{i\theta}z)
$$

= $|e^{i\theta}z|$
= $|e^{i\theta}| \cdot |z|$
= $|z| = f(z)$.

So we are done.