THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT 5120 Topics in Geometry 2021-22 Quiz 1 solutions 10th February 2022

- (a) (1 point) Write z = x + iy for real x, y, then breaking z² = -9 into real and imaginary parts gives x² y² = -9 and 2xy = 0. From the second equation we obtain x or y is 0. If y = 0, then x² = -9, which is impossible for real number x. So x = 0, and y² = 9. This gives y = ±3. So z = ±3i.
 - (b) (1 point) Same as before, breaking $z^2 = -2i$ into real and imaginary parts gives $x^2 y^2 = 0$ and 2xy = -2. From the first equation, we can factorize it into (x + y)(x y) = 0, so x = y or x = -y. If x = y, then plugging into the second equation yields $x^2 = -1$, which is impossible for real x. So x = -y, and we obtain $x^2 = 1$ and hence x = 1 or -1. The corresponding y is -1 and 1 respectively. So z = 1 i or -1 + i.
 - (c) (1 point) We use polar coordinates this time. $|-1-\sqrt{3}i| = 2$ so we can write $-1-\sqrt{3}i = 2e^{\frac{4\pi i}{3}}$. Then writing $z = re^{i\theta}$, we have $r^2e^{2i\theta} = 2e^{\frac{4\pi i}{3}}$. So $r = \sqrt{2}$ and $\theta = \frac{1}{2}(\frac{4\pi}{3}) = \frac{2\pi}{3}$ or $\theta = \frac{1}{2}(\frac{4\pi}{3} + 2\pi) = \frac{5\pi}{3}$. We have $z = \sqrt{2}e^{i\frac{2\pi}{3}} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$ or $\sqrt{2}e^{i\frac{5\pi}{3}} = \frac{\sqrt{2}}{2} \frac{\sqrt{6}}{2}i$.
- 2. (a) (1 point) We first perform a translate $z \mapsto z (1+i)$ to translate 1+i to the origin. Then perform rotation $z \mapsto e^{i\frac{\pi}{4}}$. And translate back $z \mapsto z + (1+i)$. Therefore $T(z) = e^{i\frac{\pi}{4}}(z - (1+i)) + 1 + i = (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)z + 1 + (1 - \sqrt{2})i$.
 - (b) (1 point) In Cartesian coordinates, if we write a = α₁ + α₂i, b = β₁ + β₂i and z = x+yi, then Im(az+b) = α₁x α₂y + β₁ + (α₁y + α₂x + β₂)i = α₁y + α₂x + β₂ = 0. This clearly defines a linear equation, which represents a straight line in the plane, as long as a ≠ 0.
 - (c) (2 points) To determine the image of $S = \{z : \text{Im}(az + b) = 0\}$ under T, one can consider the inverse function of T, which exists because T is bijective. Making z the subject in the formula for T(z), we obtain

$$z = T^{-1}(w) = \frac{w - 1 - (1 - \sqrt{2})i}{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i}$$
$$= \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)w + 1 - \sqrt{2} + i = a'w + b$$

So the image can be expressed as,

$$T(S) = \{ w = T(z) \in \mathbb{C} : \operatorname{Im}(az + b) = 0 \}$$

= $\{ w \in \mathbb{C} : \operatorname{Im}(aT^{-1}(w) + b) = 0 \}$
= $\{ w \in \mathbb{C} : \operatorname{Im}(a(a'w + b') + b) = 0 \}$
= $\{ w \in \mathbb{C} : \operatorname{Im}(aa'w + ab' + b) = 0 \}$

Which is again a straight line.

- 3. (a) (1 point) Taking θ = 0 yields R₀(z) = e⁰z = z is the identity map on C.
 R_{-θ} is the inverse of R_θ, because R_θ ∘ R_{-θ}(z) = e^{iθ} · e^{-iθ}z = z and likewise for R_{-θ} ∘ R_θ.
 We also have R_{θ1} ∘ R_{θ2}(z) = e^{iθ1+iθ2}z = e^{i(θ1+θ2)}z = R_{θ1+θ2}(z). So any compositions of the maps are again in the transformation group.
 - (b) (2 points) In order to check f(z) = |z| is invariant. It suffices to check that f(T(z)) = f(z) for any $z \in \mathbb{C}$ and $T \in G$. Check that for any z and θ ,

$$f(R_{\theta}(z)) = f(e^{i\theta}z)$$

= $|e^{i\theta}z|$
= $|e^{i\theta}| \cdot |z|$
= $|z| = f(z)$.

So we are done.