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• The practice problems are meant as exercise to the students. You are NOT required to
submit your solutions, but you are encouraged to work through all of them in order to
understand the course materials. The problems will be uploaded on Fridays and solutions
will be uploaded on Wednesdays before the next lecture.

• Please send an email to echlam@math.cuhk.edu.hk if you have any questions.

1. We have to show that H̄ preserves U and also that it is a transformation group. For the
former, note that az+b

cz+d
∈ H̄ clearly sends R to R, as all the entries are real. We have to

show that if Im(z) > 0 then so is Im(az+b
cz+d

) > 0. Now consider

Im

(
az + b

cz + d

)
= Im

(
(az + b)(cz̄ + d)

(cz + d)(cz̄ + d)

)
= Im

(
ac|z|2 + bd+ adz + bcz̄

|cz + d|2

)
=

Im(adz − bcz + bcz + bcz̄)

|cz + d|2

=
(ad− bc)Im(z)

|cz + d|2
> 0

Where in the above, the red colored parts are all real and hence their real parts are 0. And
ad− bc > 0 by definition.

Now to show that H̄ is a transformation group, we need to check that the identity element
is in H̄ (obvious), the inverse of a transformation in H̄ is also in H̄ , as well as composition
of two transformations in H̄ is again in H̄ . One can see that both are true if one is
comfortable with working with matrices. These just follow from the fact that inverse and
composition of real matrices are again real.

2. (a) (D, H) and (U, H̄) are isomorphic geometries. As we have seen from the lecture,
there is an explicit transformation S(z) = i1+z

1−z
that takes D to U. This means that

we have a bijection (isomorphism) between H and H̄ as well. If T ∈ H , then
STS−1 ∈ H̄ . Notice that conjugating an element S does not change the type of
transformation T is. If T is elliptic, hyperbolic or parabolic then STS−1 is again
elliptic, hyperbolic or parabolic respectively, and vice versa. So the classification
for H and H̄ are exactly the same.
If you want more details, the reason is that if say T has two fixed points and
RTR−1(z) = λz is the normal form for T . One can simply take RTR−1 =
(RS−1)STS−1(RS−1)−1 = λz and it would be the normal form for STS−1. Clearly
the λ is the same. The argument is similar for T with one fixed point.



(b) Following directly from lecture 7 practice problem Q2, we have T is elliptic if it has
one fixed point in U, T is hyperbolic if it has two fixed points on R ∪ {∞} = ∂U,
and T is parabolic if it has a unique fixed point on R ∪ {∞}.

(c) We can take the conditions in part (b) and study what it means in terms of fixed point
formula f(z) = z. Let’s simplify a bit first, az+b

cz+d
= z so cz2+(d−a)z− b = 0. The

solutions are given by a−d±
√

(d−a)2−4bc

2c
. Now the good news is all entries a, b, c, d

are real. The first situation is if c = 0, then the unique solution is ∞, this falls under
the parabolic case. Now assume c ̸= 0, and (d − a)2 − 4bc = 0, then there is a
unique real solution, so it is again the parabolic case.
Now if (d − a)2 − 4bc > 0, there will be two real solutions, so there are two fixed
points on the real line, this is the hyperbolic case.
Finally if (d − a)2 − 4bc < 0, there are two non-real solutions that are complex
conjugate to each other, so there is a fixed point in U. This is the elliptic case.

3. Like we said above, the geometric statements that are true in D are also true in U. Since
horocycles remain to be horocycle under the transformation S : D → U, and by home-
work 2 there are two horocycles passing through every pair of points, it must be the case
for U as well. The first horocycle is not hard to find, it is just the cycle centered at i with
radius 1. The second horocycle requires a bit of creative thinking. It is actually just the
horizontal line Im(z) = 1 (union with ∞). This line is tangent to R ∪ {∞} = ∂U at ∞.
This is perhaps not obvious from the complex plane, but you will see it immediately if
you draw the cline Im(z) = 1 in the extended complex plane Ĉ.

Of course, it is not very satisfying to resort to a ”just look at the picture yourself” argu-
ment. Here is a more rigorous proof. Consider the image of the first horocycle, i.e. the
circle centered at i with radius 1, under the transformation −2

z
∈ H̄ . Clearly the image of

horocycle under a transformation in H̄ is again a horocycle. And notice that −2
1+i

= i− 1

and −2
i−1

= 1 + i. So the resulting horocycle is actually one that passes through the two
desired points. Now −2

0
= ∞. So the transformation takes the horocycle to the straight

line passing through 1 + i, i− 1. This concludes the proof.

4. Since we define distance in U by taking the distance of corresponding map under S−1 :
U → D. In particular S−1 is a Mobius transform and would preserve cross ratio. And
since S−1, S also take hyperbolic straight lines to hyperbolic straight lines. We just have
to find the hyperbolic straight line connected ri, si, which is clearly the positive imaginary
axis. The two ideal points are 0,∞. So d(ri, si) = ln(ri, si,∞, 0) for r < s. This
computes to be ln (ri−∞)(si−0)

(ri−0)(si−∞)
= ln s

r
.

5. We can start from a random vertex, and pick another vertex that is one vertex apart,
connect the two points using a hyperbolic straight line. Now we have divide a hyperbolic
n-gon into a hyperbolic triangle and a hyperbolic n−1 gon. This process can be repeated
until all the polygons are hyperbolic triangles. This process is known as a triangulation.
In general, an n-gon can be triangulated into n− 2 hyperbolic triangles. Clearly the sum
of their areas is just the total area of the n-gon. So the area A = (n− 2)π −

∑
i θi where∑

θi denotes the sum of internal angles.


