THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT 5120 (2021-22, Term 2) Topics in Geometry Homework 2 Due Date: 24th March 2022

We denote by i the imaginary unit $\sqrt{-1}$, by M the group of Möbius transformations, and by H the group of hyperbolic transformations.

- 1. Let z_1, z_2, z_3 be distinct points on $\hat{\mathbb{C}}$, and w be any point on $\hat{\mathbb{C}}$. Show that there exists $z \in \hat{\mathbb{C}}$ such that $(z, z_1, z_2, z_3) = w$.
- 2. Let

$$\frac{1}{T(z) - p} = \frac{1}{z - p} + \beta$$

be the normal form of a parabolic transformation whose fixed point p is not ∞ . Show that

$$\beta = -\frac{1}{z_0 - p} = \frac{1}{T(\infty) - p}$$

where z_0 is the point such that $T(z_0) = \infty$.

3. Consider the Möbius transformation $T \in \mathbf{M}$ defined by

$$T(z) = \frac{z}{z - \mathbf{i}}.$$

- (a) Find the fixed point(s) of T.
- (b) Find the normal form of T, hence deciding what type of transformation it is.
- (c) Sketch the appropriate coordinate system of Steiner circles, and use arrows to indicate the motion of T.
- 4. Show directly that a hyperbolic transformation $T \in \mathbf{H}$ given by

$$T(z) = e^{\mathbf{i}\theta} \frac{z - z_0}{1 - \overline{z}_0 z},$$

where $|z_0| < 1$ and $\theta \in \mathbb{R}$, indeed maps the open unit disk \mathbb{D} into itself, i.e. |T(z)| < 1when |z| < 1.

5. Show that a Möbius transformation of the form

$$T(z) = \frac{az+b}{\overline{b}z+\overline{a}},$$

where $|a|^2 - |b|^2 = 1$, is a hyperbolic transformation, and conversely, any hyperbolic transformation $T \in \mathbf{H}$ is of this form.