
Solution to MATH5011 homework 9

(1) Consider Lp(Rn) with the Lebesgue measure, 0 < p < ∞. Show that ∥f + g∥p ≤ ∥f∥p+∥g∥p
holds ∀f, g implies that p ≥ 1. Hint: For 0 < p < 1, xp + yp ≥ (x+ y)p.

Solution. Recall that in fact we have, for x, y ≥ 0,


xp + yp ≥ (x+ y)p, 0 < p < 1,

xp + yp = (x+ y)p, p = 1,

xp + yp ≤ (x+ y)p, 1 < p < ∞.

Pick any a, b ≥ 0 and define f, g ∈ Lp(Rn) by

f(x) =

 a, x ∈ [0, 1]n,

0, otherwise.

and

g(x) =

 b, x ∈ [2, 3]n,

0, otherwise.

Simple calculations show that ∥f∥p = a, ∥g∥p = b and ∥f + g∥p = (ap + bp)1/p. Now the

hypothesis implies ap + bp ≥ (a+ b)p. Hence, p ≥ 1.

(2) Consider Lp(µ), 0 < p < 1. Then 1

q
+

1

p
= 1, q < 0.

(a) Prove that ∥fg∥1 ≥ ∥f∥p ∥g∥q.

(b) f1, f2 ≥ 0. ∥f + g∥p ≥ ∥f∥p + ∥g∥p.

(c) d(f, g)
def= ∥f − g∥pp defines a metric on Lp(µ).

Solution.

(a) Assume that g > 0 everywhere first. Applying Hölder’s inequality with conjugate
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exponents p̃ =
1

p
and q̃ =

1

1− p
=

p̃

p̃− 1
, we have

∥|f |p∥1 =
∥∥∥|fg|1/p̃|g|−1/p̃

∥∥∥
1

≤
∥∥∥|fg|1/p∥∥∥

p̃

∥∥∥|g|−1/p
∥∥∥
q̃

= ∥fg∥1/p̃1

∥∥∥|g|−1/(p̃−1)
∥∥∥(p̃−1)/p̃

1

= ∥fg∥p1
∥∥∥|g|−p/(1−p)

∥∥∥1−p

1
, so

∥|f |p∥1/p1 ≤ ∥fg∥1
∥∥∥|g|−p/(1−p)

∥∥∥1/p−1

1

= ∥fg∥1 ∥|g|
q∥−1/q

1 , or

∥f∥p ≤ ∥fg∥1 ∥g∥
−1
q , that is

∥fg∥1 ≥ ∥f∥p ∥g∥q .

For a general g ≥ 0, apply the result to gε = g + ε first and then let gε tend to g.

(b) Without loss of generality, we can assume ∥f + g∥p ̸= 0. Using part (a), we have

∥f + g∥pp =
∫
(f + g)p dµ

=

∫
f(f + g)p−1 dµ+

∫
g(f + g)p−1 dµ

≥ (∥f∥p + ∥g∥p)
(∫

(f + g)
(p−1)

(
p

p−1

)
dµ

)1− 1
p

=(∥f∥p + ∥g∥p) ∥f + g∥p−1
p , so

∥f + g∥p ≥ ∥f∥p + ∥g∥p .

(c) The fact that for x, y ≥ 0 and 0 < p < 1,

(x+ y)p ≤ xp + yp

implies ∫
|f + g|p dµ ≤

∫
|f |p dµ+

∫
|g|p dµ.

Hence, d(f, g) def= ∥f − g∥pp defines a metric on Lp(µ).

(3) Let X be a metric space consisting of infinitely many elements and µ a Borel measure on

X such that µ(B) > 0 on any metric ball (i.e. B = {x : d(x, x0) < ρ} for some x0 ∈ X and

ρ > 0. Show that L∞(µ) is non-separable.
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Suggestion: Find disjoint balls Brj (xj) and consider χBrj (xj).

Solution. Standard argument.

(4) Show that L1(µ)′ = L∞(µ) provided (X,M, µ) is σ-finite, i.e., ∃Xj , µ(Xj) < ∞, such that

X =
∪
Xj .

Hint: First assume µ(X) < ∞. Show that ∃g ∈ Lq(µ), ∀q > 1, such that

Λf =

∫
fg dµ, ∀f ∈ Lp, p > 1.

Next show that g ∈ L∞(µ) by proving the set {x : |g(x)| ≥ M +ε} has measure zero ∀ε > 0.

Here M = ∥Λ∥.

Solution.

Step 1. µ(X) < ∞.

In this case, Hölder’s inequality implies that a continuous linear functional Λ on

L1(X) has a restriction to Lp(X) which is again continuous since

|Λf | ≤ ∥Λ∥ ∥f∥1 ≤ ∥Λ∥ µ(X)1/q ∥f∥p (1)

for all p ≥ 1. By the proof for p > 1 in the lecture notes, we have the existence of

a unique vp ∈ Lq(X) such that Λf =

∫
vpf dµ for all f ∈ Lp(X). Moreover, since

Lr(X) ⊂ Lp(X) for r ≥ p (by Hölder’s inequality) the uniqueness of vp implies that

vp is, in fact, independent of p, i.e. this function (which we now call v) is in every

Lr(X)-space for 1 < r < ∞.

If we now pick some conjugate exponents q and p with p > 1 and choose f = |v|q−2v

in (1), we obtain

∫
|v|q dµ =Λf

≤ ∥Λ∥ µ(X)1/q
(∫

|v|(q−1)p dµ

)1/p

= ∥Λ∥ µ(X)1/q ∥v∥q−1
q ,

and hence ∥v∥q ≤ ∥Λ∥ µ(X)1/q for all q < ∞. We claim that v ∈ L∞(X); in

fact ∥v∥∞ ≤ ∥Λ∥. Suppose that µ({x ∈ X : |v(x)| > ∥Λ∥ + ε}) = M > 0.

Then ∥v∥q ≥ (∥Λ∥ + ε)M1/q, which exceeds ∥Λ∥ µ(X)1/q if q is big enough. Thus
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v ∈ L∞(X) and Λf =

∫
vf dµ for all f ∈ Lp(X) for any p > 1. If f ∈ L1(X)

is given, then
∫
|v||f | dµ < ∞. Replacing f by fk = fχ{x:|f(x)|≤k}, we note that

|fk| ≤ |f | and fk(x) → f(x) pointwise as k → ∞; hence, by dominated convergence,

fk → f in L1(X) and vfk → vf in L1(X). Thus

Λf = lim
k→∞

Λfk = lim
k→∞

∫
vfk dµ =

∫
vf dµ.

Step 2. µ(X) = ∞.

The previous conclusion can be extended to the case that µ(X) = ∞ but X is

σ-finite. Then

X =
∞∪
j=1

Xj

with µ(Xj) finite and with Xj ∩Xk empty whenever j ̸= k. Any L1(X) function f

can be written as

f(x) =
∞∑
j=1

fj(x)

where fj = χjf and χj is the characteristic function of Xj . fj 7→ Λfj is then an

element of L1(Xj)
′, and hence there is a function vj ∈ L∞(Xj) such that Λfj =∫

Xj

vjfj dµ =

∫
Xj

vjf dµ. The important point is that each vj is bounded in L∞(Xj)

by the same ∥Λ∥. Moreover, the function v, defined on all of X by v(x) = vj(x) for

x ∈ Xj , is clearly measurable and bounded by ∥Λ∥. Thus, we have Λf =

∫
X
vf dµ

by the countable additivity of the measure µ.

If there exist v, w ∈ L∞(X) such that

Λf =

∫
X
vf dµ =

∫
X
wf dµ, ∀f ∈ L1(X),

then ∫
X
(v − w)f dµ = 0, ∀f ∈ L1(X).

Suppose, on the contrary, that (v − w) > 0 on some A ⊂ M with 0 < µ(A) < ∞.

By taking f = χA one arrives at a contradiction. Thus, given Λ ∈ L1(X) there

corresponds a unique v ∈ L∞(X).
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(5) (a) For 1 ≤ p < ∞, ∥f∥p , ∥g∥p ≤ R, prove that

∫
||f |p − |g|p| dµ ≤ 2pRp−1 ∥f − g∥p .

(b) Deduce that the map f 7→ |f |p from Lp(µ) to L1(µ) is continuous.

Hint: Try |xp − yp| ≤ p|x− y|(xp−1 + yp−1).

Solution.

(a) Notice that |xp−yp| ≤ p|x−y|(xp−1+yp−1), which follows form the mean value theorem

applying to h(x) = xp. Then it follows easily from Hölder’s inequality that

∫
||f |p − |g|p| dµ ≤ 2pRp−1 ∥f − g∥p .

(b) This is a direct consequence of (a).

(6) Optional. Let M be the collection of all sets E in the unit interval [0, 1] such that either E

or its complement is at most countable. Let µ be the counting measure on this σ-algebra

M. If g(x) = x for 0 ≤ x ≤ 1, show that g is not M-measurable, although the mapping

f 7→
∑

xf(x) =

∫
fg dµ

makes sense for every f ∈ L1(µ) and defines a bounded linear functional on L1(µ). Thus

(L1)∗ ̸= L∞ in this situation.

Solution. g is not M-measurable because g−1

(
1

4
,
3

4

)
=

(
1

4
,
3

4

)
/∈ M. The functional

Λf =
∑

xf(x) is clearly linear. To see that it is bounded, if f ∈ L1(µ), then f is non-zero

on an at most countable set {xi} and by integrability,

∑
i=1

|f(xi)| < ∞.

Thus Λf is well defined as g is a bounded function. Hence the operator is bounded.

(7) Optional. Let L∞ = L∞(m), where m is Lebesgue measure on I = [0, 1]. Show that there

is a bounded linear functional Λ ̸= 0 on L∞ that is 0 on C(I), and therefore there is no

g ∈ L1(m) that satisfies Λf =

∫
I
fg dm for every f ∈ L∞. Thus (L∞)∗ ̸= L1.

Solution. Method 1. For any x ∈ I take Λxf = g(x+)−g(x−) for all f such that f = g a.e.

for some function g such that the two one-sided limits g(x+) and g(x−) both exist. Then
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∥Λx − Λy∥ ≥ 1 for x ̸= y. With reference to the question, we can just take x = 1/2.

Method 2. Consider χ[0, 1
2
] ∈ L∞ \ C(I), as C(I) is closed subspace in L∞, by consequence

of Hahn-Banach Theorem (thm 3.11 in p.38 of lecture notes on functional analysis.), there

is non-zero bounded linear functional Λ on L∞ which is zero on C(I).

If there is g ∈ L1(m) that satisfies Λf =

∫
I
fg dm for every f ∈ L∞,

Λf =

∫
I
fg dm = 0,∀f ∈ C(I) ⇒ g = 0.

we have Λ = 0 which is impossible.

(8) Prove Brezis-Lieb lemma for 0 < p ≤ 1.

Hint: Use |a+ b|p ≤ |a|p + |b|p in this range.

Solution. Taking gn = fn − f as a and f as b,

∣∣|f + gn|p − |gn|p
∣∣ ≤ |f |p,

or,

−|f |p ≤ |f + gn|p − |gpn ≤ |f |p.

we have

−2|f |p ≤ |f + gn|p − |gn|p − |f |p ≤ 0

which implies ∣∣|f + gn|p − |gn|p − |f |p
∣∣ ≤ 2|f |p,

and result follows from Lebesgue dominated convergence theorem.

(9) Let fn, f ∈ Lp(µ), 0 < p < ∞, fn → f a.e., ∥fn∥p → ∥f∥p. Show that ∥fn − f∥p → 0.

Solution. Using the Brezis-Lieb lemma for 0 < p < ∞, we have

∥fn − f∥pp =
∫
X
|fn − f |p dµ

≤
∫
X
(|fn − f |p − (|fn|p − |f |p)) dµ+

∫
X
(|fn|p − |f |p) dµ

≤
∫
X
||fn − f |p − (|fn|p − |f |p) | dµ+

(
∥fn∥pp − ∥f∥pp

)
→ 0

as n → ∞.
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(10) Suppose µ is a positive measure on X, µ(X) < ∞, fn ∈ L1(µ) for n = 1, 2, 3, . . . , fn(x) →

f(x) a.e., and there exists p > 1 and C < ∞ such that
∫
X
|fn|p dµ < C for all n. Prove that

lim
n→∞

∫
X
|f − fn| dµ = 0.

Hint: {fn} is uniformly integrable.

Solution. By Vitali’s convergence Theorem, it suffices to prove that {fn} is uniformly

integrable. Let q be conjugate to p. By Hölder inequality,

∫
E
|fn|dµ ≤ ∥fn∥p{µ(E)}

1
q

≤ C
1
p {µ(E)}

1
q ,

for any measurable E. Now the result follows easily.

(11) We have the following version of Vitali’s convergence theorem. Let {fn} ⊂ Lp(µ), 1 ≤ p <

∞. Then fn → f in Lp-norm if and only if

(i) {fn} converges to f in measure,

(ii) {|fn|p} is uniformly integrable, and

(iii) ∀ε > 0, there exists a measurable E, µ(E) < ∞, such that
∫
X\E

|fn|p dµ < ε, ∀n.

I found this statement from PlanetMath. Prove or disprove it.

Solution. Let ε > 0. By (iii), there exists a set E of finite measure (WLOG assume positive

measure) such that ∫
Ẽ
|fn|p < ε.

Since {fn} converges to f in measure, there is a subsequence {fnk
} which converges to f

pointwisely a.e.. By Fatou’s Lemma,

∫
Ẽ
|f |p < ε.

By (ii), there exists δ > 0 such that whenever µ(A) < δ,

∫
A
|fn|p < ε

1
p ;
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WLOG, by choosing a smaller δ, we may assume further whenever µ(A) < δ

∫
A
|f |p < ε

1
p

because there is a subsequence {fnk
} which converges to f pointwisely a.e. and we can apply

Fatou’s Lemma, By (i), there exists N ∈ N such that for all n ≥ N

µ{x ∈ E :
∣∣∣(fn − f)(x)

∣∣∣p ≥ ε

µ(E)
|} < δ.

Now, for n ≥ N, define An = {x ∈ E : |(fn− f)(x)|p ≥ ε
µ(E)} and Bn = E \An, and we have

∫
|fn − f |p =

∫
Ẽ
|fn − f |p +

∫
E
|fn − f |p

< 2pε+

∫
An

|fn − f |p +
∫
Bn

|fn − f |p

< 2pε+

(∫
An

|fn|p +
∫
An

|f |p
)p

+ ε

< 2pε+ 2pε+ ε = (2p+1 + 1)ε.

This completes the proof.

(12) Let {xn} be bounded in some normed space X. Suppose for Y dense in X ′, Λxn → Λx,

∀Λ ∈ Y for some x. Deduce that xn ⇀ x.

Solution. Since {xn} is bounded, there exists M > 0 such that ∥xn∥ ≤ M . Write M1 =

max{M, ∥x∥}.

Given ε > 0 and Λ ∈ X ′, choose Λ1 ∈ Y such that ∥Λ− Λ1∥ <
ε

3M1
and choose N large

such that |Λxn − Λx| < ε

3
. Then

|Λxn − Λx| = |Λxn − Λ1xn|+ |Λ1xn − Λ1x|+ |Λ1x− Λx|

≤ ε

3M1
M +

ε

3
+

ε

3M1
∥x∥

< ε.

(13) Consider fn(x) = n1/pχ(nx) in Lp(R). Then fn ⇀ 0 for p > 1 but not for p = 1. Here

χ = χ[0,1].

Solution. For 1 < p < ∞, let q be the conjugate exponent and let g ∈ Lq(R). By Hölder’s
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inequality and Lebesgue’s dominated convergence theorem,

∫
R
fng dx =

∫ 1
n

0
n1/pg(x) dx

≤

(∫ 1
n

0
(n1/p)p dx

) 1
p
(∫ 1

n

0
|g(x)|q dx

) 1
q

≤
(∫

R
χ[0, 1

n
]|g(x)|

q dx

) 1
q

→ 0

as n → ∞. Hence, fn ⇀ 0.

For p = 1, take g ≡ 1 in L∞(R). Then

∫
R
fng dx = n

∫ 1
n

0
dx = 1.

Hence, fn ̸⇀ 0.

(14) Let {fn} be bounded in Lp(µ), 1 < p < ∞. Prove that if fn → f a.e., then fn ⇀ f . Is this

result still true when p = 1?

Solution. It suffices to show that for any g ∈ Lq(µ),

∫
(fn − f)gdµ → 0 as n → ∞.

By Prop 4.14 the density theorem, we may consider the case where g is a simple function

with finite support. Let E be a finite measure set such that g = 0 outside E and M > 0 be

bound of g. By a previous problem, {fn, f} is uniformly integrable, for all ε > 0, ∃δ > 0,

s.t. for any A measurable s.t µ(A) < δ,

∫
A
|h|dµ < ε, h = fn or f.

By Egorov’s Theorem, there is a measurable B s.t µ(E \B) < δ and fn converges uniformly
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to f on B. Hence

∣∣∣ ∫ (fn − f)gdµ
∣∣∣ =

∣∣∣ ∫
E
(fn − f)gdµ

∣∣∣
=

∣∣∣ ∫
E\B

(fn − f)gdµ
∣∣∣+ ∣∣∣ ∫

B
(fn − f)gdµ

∣∣∣
< 2Mε+

∣∣∣ ∫
B
(fn − f)gdµ

∣∣∣
< (2M + 1)ε, for large n .

An alternate approach is, using the Lp-boundedness, a subsequence of fn weakly converges

to some g ∈ Lp(µ). Then a convex combination of this subsequence converges strongly

to g. Hence it has a subsequence converges pointwisely to g. On the other hand, the

whole sequence converges pointwisely to f . So g = f . We have shown that every weakly

convergent subsequence of {fn} must converge pointwisely to f . Now, suppose that fn does

not converge weakly to f . There are ρ > 0 and g ∈ Lq, such that

∣∣∣∣∫ fnk
gdµ−

∫
fgdµ

∣∣∣∣ > ρ , ∀nk

for some subsequence fnk
. But we can find a subsequence from this subsequence which

converges weakly to f , contradiction holds.

For p=1, the result is false by the last problem.

(15) The construction of Cantor diagonal sequence. Let fn be a sequence of real-valued functions

defined on some set and {xk} a subset of this set. Suppose that there is some M such that

|fn(xk)| ≤ M for all n, k. Show that there is a subsequence {fnj} satisfying limj→∞ fnj (xk)

exists for each xk.

Solution. Let A = {xj}, j ≥ 1. Since {fn(x1)} is a bounded sequence, we can extract a sub-

sequence {f1
n} such that {f1

n(x1)} is convergent. Next, as {f1
n(x2)} is bounded, it has a sub-

sequence {f2
n} such that {f2

n(x2)} is convergent. Keep doing in this way, we obtain sequences

{f j
n} satisfying (i) {f j+1

n } is a subsequence of {f j
n} and (ii) {f j

n(x1)}, {f j
n(x2)}, · · · , {f j

n(xj)}

are convergent. Then the diagonal sequence {gn}, gn = fn
n , for all n ≥ 1, is a subsequence

of {fn} which converges at every xj .
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