Solution to MATH5011 homework 9

(1) Consider $L^p(\mathbb{R}^n)$ with the Lebesgue measure, $0 . Show that <math>||f + g||_p \le ||f||_p + ||g||_p$ holds $\forall f, g$ implies that $p \ge 1$. Hint: For $0 , <math>x^p + y^p \ge (x + y)^p$.

Solution. Recall that in fact we have, for $x, y \ge 0$,

$$\begin{cases} x^p + y^p & \ge (x+y)^p, & 0$$

Pick any $a, b \ge 0$ and define $f, g \in L^p(\mathbb{R}^n)$ by

$$f(x) = \begin{cases} a, & x \in [0,1]^n, \\ 0, & \text{otherwise.} \end{cases}$$

and

$$g(x) = \begin{cases} b, & x \in [2,3]^n, \\ 0, & \text{otherwise.} \end{cases}$$

Simple calculations show that $||f||_p = a$, $||g||_p = b$ and $||f + g||_p = (a^p + b^p)^{1/p}$. Now the hypothesis implies $a^p + b^p \ge (a + b)^p$. Hence, $p \ge 1$.

- (2) Consider $L^p(\mu)$, $0 . Then <math>\frac{1}{q} + \frac{1}{p} = 1$, q < 0.
 - (a) Prove that $||fg||_1 \ge ||f||_p ||g||_q$.
 - (b) $f_1, f_2 \ge 0$. $||f + g||_p \ge ||f||_p + ||g||_p$.
 - (c) $d(f,g) \stackrel{\text{def}}{=} ||f g||_p^p$ defines a metric on $L^p(\mu)$.

Solution.

(a) Assume that g>0 everywhere first. Applying Hölder's inequality with conjugate

exponents
$$\widetilde{p} = \frac{1}{p}$$
 and $\widetilde{q} = \frac{1}{1-p} = \frac{\widetilde{p}}{\widetilde{p}-1}$, we have
$$\begin{aligned} \||f|^p\|_1 &= \left\||fg|^{1/\widetilde{p}}|g|^{-1/\widetilde{p}}\right\|_1 \\ &\leq \left\||fg|^{1/p}\right\|_{\widetilde{p}} \left\||g|^{-1/p}\right\|_{\widetilde{q}} \\ &= \|fg\|_1^{1/\widetilde{p}} \left\||g|^{-1/(\widetilde{p}-1)}\right\|_1^{(\widetilde{p}-1)/\widetilde{p}} \\ &= \|fg\|_1^p \left\||g|^{-p/(1-p)}\right\|_1^{1-p}, \text{ so} \\ \||f|^p\|_1^{1/p} &\leq \|fg\|_1 \left\||g|^{-p/(1-p)}\right\|_1^{1/p-1} \\ &= \|fg\|_1 \||g|^q\|_1^{-1/q}, \text{ or} \\ \|f\|_p &\leq \|fg\|_1 \|g\|_q^{-1}, \text{ that is} \\ \|fg\|_1 &\geq \|f\|_p \|g\|_q. \end{aligned}$$

For a general $g \geq 0$, apply the result to $g_{\varepsilon} = g + \varepsilon$ first and then let g_{ε} tend to g_{ε} .

(b) Without loss of generality, we can assume $||f + g||_p \neq 0$. Using part (a), we have

$$||f + g||_p^p = \int (f + g)^p d\mu$$

$$= \int f(f + g)^{p-1} d\mu + \int g(f + g)^{p-1} d\mu$$

$$\geq (||f||_p + ||g||_p) \left(\int (f + g)^{(p-1)\left(\frac{p}{p-1}\right)} d\mu \right)^{1 - \frac{1}{p}}$$

$$= (||f||_p + ||g||_p) ||f + g||_p^{p-1}, \text{ so}$$

$$||f + g||_p \geq ||f||_p + ||g||_p.$$

(c) The fact that for $x, y \ge 0$ and 0 ,

$$(x+y)^p \le x^p + y^p$$

implies

$$\int |f+g|^p d\mu \le \int |f|^p d\mu + \int |g|^p d\mu.$$

Hence, $d(f,g) \stackrel{\text{def}}{=} ||f - g||_p^p$ defines a metric on $L^p(\mu)$.

(3) Let X be a metric space consisting of infinitely many elements and μ a Borel measure on X such that $\mu(B) > 0$ on any metric ball (i.e. $B = \{x : d(x, x_0) < \rho\}$ for some $x_0 \in X$ and $\rho > 0$. Show that $L^{\infty}(\mu)$ is non-separable.

Suggestion: Find disjoint balls $B_{r_j}(x_j)$ and consider $\chi_{B_{r_j}(x_j)}$.

Solution. Standard argument.

(4) Show that $L^1(\mu)' = L^{\infty}(\mu)$ provided (X, \mathfrak{M}, μ) is σ -finite, i.e., $\exists X_j, \, \mu(X_j) < \infty$, such that $X = \bigcup X_j$.

Hint: First assume $\mu(X) < \infty$. Show that $\exists g \in L^q(\mu), \forall q > 1$, such that

$$\Lambda f = \int f g \, d\mu, \quad \forall f \in L^p, \ p > 1.$$

Next show that $g \in L^{\infty}(\mu)$ by proving the set $\{x : |g(x)| \ge M + \varepsilon\}$ has measure zero $\forall \varepsilon > 0$. Here $M = ||\Lambda||$.

Solution.

Step 1. $\mu(X) < \infty$.

In this case, Hölder's inequality implies that a continuous linear functional Λ on $L^1(X)$ has a restriction to $L^p(X)$ which is again continuous since

$$|\Lambda f| \le ||\Lambda|| \, ||f||_1 \le ||\Lambda|| \, \mu(X)^{1/q} \, ||f||_p$$
 (1)

for all $p \geq 1$. By the proof for p > 1 in the lecture notes, we have the existence of a unique $v_p \in L^q(X)$ such that $\Lambda f = \int v_p f \, d\mu$ for all $f \in L^p(X)$. Moreover, since $L^r(X) \subset L^p(X)$ for $r \geq p$ (by Hölder's inequality) the uniqueness of v_p implies that v_p is, in fact, independent of p, i.e. this function (which we now call v) is in every $L^r(X)$ -space for $1 < r < \infty$.

If we now pick some conjugate exponents q and p with p > 1 and choose $f = |v|^{q-2}\overline{v}$ in (1), we obtain

$$\int |v|^q d\mu = \Lambda f$$

$$\leq \|\Lambda\| \, \mu(X)^{1/q} \left(\int |v|^{(q-1)p} d\mu \right)^{1/p}$$

$$= \|\Lambda\| \, \mu(X)^{1/q} \, \|v\|_q^{q-1},$$

and hence $\|v\|_q \leq \|\Lambda\| \, \mu(X)^{1/q}$ for all $q < \infty$. We claim that $v \in L^\infty(X)$; in fact $\|v\|_\infty \leq \|\Lambda\|$. Suppose that $\mu(\{x \in X : |v(x)| > \|\Lambda\| + \varepsilon\}) = M > 0$. Then $\|v\|_q \geq (\|\Lambda\| + \varepsilon)M^{1/q}$, which exceeds $\|\Lambda\| \, \mu(X)^{1/q}$ if q is big enough. Thus

 $v \in L^{\infty}(X)$ and $\Lambda f = \int vf \, d\mu$ for all $f \in L^p(X)$ for any p > 1. If $f \in L^1(X)$ is given, then $\int |v||f| \, d\mu < \infty$. Replacing f by $f^k = f\chi_{\{x:|f(x)| \leq k\}}$, we note that $|f^k| \leq |f|$ and $f^k(x) \to f(x)$ pointwise as $k \to \infty$; hence, by dominated convergence, $f^k \to f$ in $L^1(X)$ and $vf^k \to vf$ in $L^1(X)$. Thus

$$\Lambda f = \lim_{k \to \infty} \Lambda f^k = \lim_{k \to \infty} \int v f^k \, d\mu = \int v f \, d\mu.$$

Step 2. $\mu(X) = \infty$.

The previous conclusion can be extended to the case that $\mu(X) = \infty$ but X is σ -finite. Then

$$X = \bigcup_{j=1}^{\infty} X_j$$

with $\mu(X_j)$ finite and with $X_j \cap X_k$ empty whenever $j \neq k$. Any $L^1(X)$ function f can be written as

$$f(x) = \sum_{j=1}^{\infty} f_j(x)$$

where $f_j = \chi_j f$ and χ_j is the characteristic function of X_j . $f_j \mapsto \Lambda f_j$ is then an element of $L^1(X_j)'$, and hence there is a function $v_j \in L^\infty(X_j)$ such that $\Lambda f_j = \int_{X_j} v_j f_j \, d\mu = \int_{X_j} v_j f \, d\mu$. The important point is that each v_j is bounded in $L^\infty(X_j)$ by the same $\|\Lambda\|$. Moreover, the function v, defined on all of X by $v(x) = v_j(x)$ for $x \in X_j$, is clearly measurable and bounded by $\|\Lambda\|$. Thus, we have $\Lambda f = \int_X v f \, d\mu$ by the countable additivity of the measure μ .

If there exist $v, w \in L^{\infty}(X)$ such that

$$\Lambda f = \int_X v f \, d\mu = \int_X w f \, d\mu, \quad \forall f \in L^1(X),$$

then

$$\int_X (v - w) f \, d\mu = 0, \quad \forall f \in L^1(X).$$

Suppose, on the contrary, that (v - w) > 0 on some $A \subset \mathfrak{M}$ with $0 < \mu(A) < \infty$. By taking $f = \chi_A$ one arrives at a contradiction. Thus, given $\Lambda \in L^1(X)$ there corresponds a unique $v \in L^{\infty}(X)$. (5) (a) For $1 \le p < \infty$, $\|f\|_p$, $\|g\|_p \le R$, prove that

$$\int ||f|^p - |g|^p| \ d\mu \le 2pR^{p-1} \|f - g\|_p.$$

(b) Deduce that the map $f \mapsto |f|^p$ from $L^p(\mu)$ to $L^1(\mu)$ is continuous.

Hint: Try $|x^p - y^p| \le p|x - y|(x^{p-1} + y^{p-1})$.

Solution.

(a) Notice that $|x^p - y^p| \le p|x - y|(x^{p-1} + y^{p-1})$, which follows form the mean value theorem applying to $h(x) = x^p$. Then it follows easily from Hölder's inequality that

$$\int ||f|^p - |g|^p| \ d\mu \le 2pR^{p-1} \|f - g\|_p.$$

- (b) This is a direct consequence of (a).
- (6) Optional. Let \mathfrak{M} be the collection of all sets E in the unit interval [0,1] such that either E or its complement is at most countable. Let μ be the counting measure on this σ -algebra \mathfrak{M} . If g(x) = x for $0 \le x \le 1$, show that g is not \mathfrak{M} -measurable, although the mapping

$$f \mapsto \sum x f(x) = \int f g \, d\mu$$

makes sense for every $f \in L^1(\mu)$ and defines a bounded linear functional on $L^1(\mu)$. Thus $(L^1)^* \neq L^{\infty}$ in this situation.

Solution. g is not \mathfrak{M} -measurable because $g^{-1}\left(\frac{1}{4},\frac{3}{4}\right)=\left(\frac{1}{4},\frac{3}{4}\right)\notin\mathfrak{M}$. The functional $\Lambda f=\sum x f(x)$ is clearly linear. To see that it is bounded, if $f\in L^1(\mu)$, then f is non-zero on an at most countable set $\{x_i\}$ and by integrability,

$$\sum_{i=1} |f(x_i)| < \infty.$$

Thus Λf is well defined as g is a bounded function. Hence the operator is bounded.

(7) Optional. Let $L^{\infty} = L^{\infty}(m)$, where m is Lebesgue measure on I = [0, 1]. Show that there is a bounded linear functional $\Lambda \neq 0$ on L^{∞} that is 0 on C(I), and therefore there is no $g \in L^1(m)$ that satisfies $\Lambda f = \int_I f g \, dm$ for every $f \in L^{\infty}$. Thus $(L^{\infty})^* \neq L^1$.

Solution. Method 1. For any $x \in I$ take $\Lambda_x f = g(x_+) - g(x_-)$ for all f such that f = g a.e. for some function g such that the two one-sided limits $g(x_+)$ and $g(x_-)$ both exist. Then

 $\|\Lambda_x - \Lambda_y\| \ge 1$ for $x \ne y$. With reference to the question, we can just take x = 1/2.

Method 2. Consider $\chi_{[0,\frac{1}{2}]} \in L^{\infty} \setminus C(I)$, as C(I) is closed subspace in L^{∞} , by consequence of Hahn-Banach Theorem (thm 3.11 in p.38 of lecture notes on functional analysis.), there is non-zero bounded linear functional Λ on L^{∞} which is zero on C(I).

If there is $g \in L^1(m)$ that satisfies $\Lambda f = \int_I fg \, dm$ for every $f \in L^{\infty}$,

$$\Lambda f = \int_{I} fg \, dm = 0, \forall f \in C(I) \Rightarrow g = 0.$$

we have $\Lambda = 0$ which is impossible.

(8) Prove Brezis-Lieb lemma for 0 .

Hint: Use $|a + b|^p \le |a|^p + |b|^p$ in this range.

Solution. Taking $g_n = f_n - f$ as a and f as b,

$$\left| |f + g_n|^p - |g_n|^p \right| \le |f|^p,$$

or,

$$-|f|^p \le |f + g_n|^p - |g_n^p \le |f|^p$$
.

we have

$$-2|f|^p \le |f + g_n|^p - |g_n|^p - |f|^p \le 0$$

which implies

$$||f + g_n|^p - |g_n|^p - |f|^p| \le 2|f|^p,$$

and result follows from Lebesgue dominated convergence theorem.

(9) Let $f_n, f \in L^p(\mu)$, $0 , <math>f_n \to f$ a.e., $||f_n||_p \to ||f||_p$. Show that $||f_n - f||_p \to 0$.

Solution. Using the Brezis-Lieb lemma for 0 , we have

$$||f_n - f||_p^p = \int_X |f_n - f|^p d\mu$$

$$\leq \int_X (|f_n - f|^p - (|f_n|^p - |f|^p)) d\mu + \int_X (|f_n|^p - |f|^p) d\mu$$

$$\leq \int_X ||f_n - f|^p - (|f_n|^p - |f|^p)| d\mu + (||f_n||_p^p - ||f||_p^p)$$

$$\to 0$$

as $n \to \infty$.

(10) Suppose μ is a positive measure on X, $\mu(X) < \infty$, $f_n \in L^1(\mu)$ for $n = 1, 2, 3, \ldots, f_n(x) \to f(x)$ a.e., and there exists p > 1 and $C < \infty$ such that $\int_X |f_n|^p d\mu < C$ for all n. Prove that

$$\lim_{n \to \infty} \int_X |f - f_n| \, d\mu = 0.$$

Hint: $\{f_n\}$ is uniformly integrable.

Solution. By Vitali's convergence Theorem, it suffices to prove that $\{f_n\}$ is uniformly integrable. Let q be conjugate to p. By Hölder inequality,

$$\int_{E} |f_{n}| d\mu \leq \|f_{n}\|_{p} \{\mu(E)\}^{\frac{1}{q}}
\leq C^{\frac{1}{p}} \{\mu(E)\}^{\frac{1}{q}},$$

for any measurable E. Now the result follows easily.

- (11) We have the following version of Vitali's convergence theorem. Let $\{f_n\} \subset L^p(\mu)$, $1 \leq p < \infty$. Then $f_n \to f$ in L^p -norm if and only if
 - (i) $\{f_n\}$ converges to f in measure,
 - (ii) $\{|f_n|^p\}$ is uniformly integrable, and
 - (iii) $\forall \varepsilon > 0$, there exists a measurable E, $\mu(E) < \infty$, such that $\int_{X \setminus E} |f_n|^p d\mu < \varepsilon$, $\forall n$.

I found this statement from PlanetMath. Prove or disprove it.

Solution. Let $\varepsilon > 0$. By (iii), there exists a set E of finite measure (WLOG assume positive measure) such that

$$\int_{\widetilde{E}} |f_n|^p < \varepsilon.$$

Since $\{f_n\}$ converges to f in measure, there is a subsequence $\{f_{n_k}\}$ which converges to f pointwisely a.e.. By Fatou's Lemma,

$$\int_{\widetilde{E}} |f|^p < \varepsilon.$$

By (ii), there exists $\delta > 0$ such that whenever $\mu(A) < \delta$,

$$\int_{A} |f_n|^p < \varepsilon^{\frac{1}{p}};$$

WLOG, by choosing a smaller δ , we may assume further whenever $\mu(A) < \delta$

$$\int_{A} |f|^{p} < \varepsilon^{\frac{1}{p}}$$

because there is a subsequence $\{f_{n_k}\}$ which converges to f pointwisely a.e. and we can apply Fatou's Lemma, By (i), there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$\mu\{x \in E : \left| (f_n - f)(x) \right|^p \ge \frac{\varepsilon}{\mu(E)} | \} < \delta.$$

Now, for $n \geq \mathbb{N}$, define $A_n = \{x \in E : |(f_n - f)(x)|^p \geq \frac{\varepsilon}{\mu(E)}\}$ and $B_n = E \setminus A_n$, and we have

$$\int |f_n - f|^p = \int_{\widetilde{E}} |f_n - f|^p + \int_E |f_n - f|^p$$

$$< 2^p \varepsilon + \int_{A_n} |f_n - f|^p + \int_{B_n} |f_n - f|^p$$

$$< 2^p \varepsilon + \left(\int_{A_n} |f_n|^p + \int_{A_n} |f|^p \right)^p + \varepsilon$$

$$< 2^p \varepsilon + 2^p \varepsilon + \varepsilon = (2^{p+1} + 1)\varepsilon.$$

This completes the proof.

(12) Let $\{x_n\}$ be bounded in some normed space X. Suppose for Y dense in X', $\Lambda x_n \to \Lambda x$, $\forall \Lambda \in Y$ for some x. Deduce that $x_n \to x$.

Solution. Since $\{x_n\}$ is bounded, there exists M > 0 such that $||x_n|| \le M$. Write $M_1 = \max\{M, ||x||\}$.

Given $\varepsilon > 0$ and $\Lambda \in X'$, choose $\Lambda_1 \in Y$ such that $\|\Lambda - \Lambda_1\| < \frac{\varepsilon}{3M_1}$ and choose N large such that $|\Lambda x_n - \Lambda x| < \frac{\varepsilon}{3}$. Then

$$\begin{split} |\Lambda x_n - \Lambda x| &= |\Lambda x_n - \Lambda_1 x_n| + |\Lambda_1 x_n - \Lambda_1 x| + |\Lambda_1 x - \Lambda x| \\ &\leq \frac{\varepsilon}{3M_1} M + \frac{\varepsilon}{3} + \frac{\varepsilon}{3M_1} \|x\| \\ &< \varepsilon. \end{split}$$

(13) Consider $f_n(x) = n^{1/p}\chi(nx)$ in $L^p(\mathbb{R})$. Then $f_n \to 0$ for p > 1 but not for p = 1. Here $\chi = \chi_{[0,1]}$.

Solution. For $1 , let q be the conjugate exponent and let <math>g \in L^q(\mathbb{R})$. By Hölder's

inequality and Lebesgue's dominated convergence theorem,

$$\int_{\mathbb{R}} f_n g \, dx = \int_0^{\frac{1}{n}} n^{1/p} g(x) \, dx
\leq \left(\int_0^{\frac{1}{n}} (n^{1/p})^p \, dx \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{n}} |g(x)|^q \, dx \right)^{\frac{1}{q}}
\leq \left(\int_{\mathbb{R}} \chi_{[0,\frac{1}{n}]} |g(x)|^q \, dx \right)^{\frac{1}{q}}
\to 0$$

as $n \to \infty$. Hence, $f_n \rightharpoonup 0$.

For p=1, take $g\equiv 1$ in $L^{\infty}(\mathbb{R})$. Then

$$\int_{\mathbb{R}} f_n g \, dx = n \int_0^{\frac{1}{n}} \, dx = 1.$$

Hence, $f_n \not\rightharpoonup 0$.

(14) Let $\{f_n\}$ be bounded in $L^p(\mu)$, $1 . Prove that if <math>f_n \to f$ a.e., then $f_n \to f$. Is this result still true when p = 1?

Solution. It suffices to show that for any $g \in L^q(\mu)$,

$$\int (f_n - f)gd\mu \to 0 \text{ as } n \to \infty.$$

By Prop 4.14 the density theorem, we may consider the case where g is a simple function with finite support. Let E be a finite measure set such that g=0 outside E and M>0 be bound of g. By a previous problem, $\{f_n, f\}$ is uniformly integrable, for all $\varepsilon > 0, \exists \delta > 0$, s.t. for any A measurable s.t $\mu(A) < \delta$,

$$\int_{A} |h| d\mu < \varepsilon, h = f_n \text{ or } f.$$

By Egorov's Theorem, there is a measurable B s.t $\mu(E \setminus B) < \delta$ and f_n converges uniformly

to f on B. Hence

$$\left| \int (f_n - f)gd\mu \right| = \left| \int_E (f_n - f)gd\mu \right|$$

$$= \left| \int_{E \setminus B} (f_n - f)gd\mu \right| + \left| \int_B (f_n - f)gd\mu \right|$$

$$< 2M\varepsilon + \left| \int_B (f_n - f)gd\mu \right|$$

$$< (2M + 1)\varepsilon, \text{ for large n .}$$

An alternate approach is, using the L^p -boundedness, a subsequence of f_n weakly converges to some $g \in L^p(\mu)$. Then a convex combination of this subsequence converges strongly to g. Hence it has a subsequence converges pointwisely to g. On the other hand, the whole sequence converges pointwisely to f. So g = f. We have shown that every weakly convergent subsequence of $\{f_n\}$ must converge pointwisely to f. Now, suppose that f_n does not converge weakly to f. There are $\rho > 0$ and $g \in L^q$, such that

$$\left| \int f_{n_k} g d\mu - \int f g d\mu \right| > \rho , \quad \forall n_k$$

for some subsequence f_{n_k} . But we can find a subsequence from this subsequence which converges weakly to f, contradiction holds.

For p=1, the result is false by the last problem.

(15) The construction of Cantor diagonal sequence. Let f_n be a sequence of real-valued functions defined on some set and $\{x_k\}$ a subset of this set. Suppose that there is some M such that $|f_n(x_k)| \leq M$ for all n, k. Show that there is a subsequence $\{f_{n_j}\}$ satisfying $\lim_{j\to\infty} f_{n_j}(x_k)$ exists for each x_k .

Solution. Let $A = \{x_j\}, j \geq 1$. Since $\{f_n(x_1)\}$ is a bounded sequence, we can extract a subsequence $\{f_n^1\}$ such that $\{f_n^1(x_1)\}$ is convergent. Next, as $\{f_n^1(x_2)\}$ is bounded, it has a subsequence $\{f_n^2\}$ such that $\{f_n^2(x_2)\}$ is convergent. Keep doing in this way, we obtain sequences $\{f_n^j\}$ satisfying (i) $\{f_n^{j+1}\}$ is a subsequence of $\{f_n^j\}$ and (ii) $\{f_n^j(x_1)\}, \{f_n^j(x_2)\}, \cdots, \{f_n^j(x_j)\}$ are convergent. Then the diagonal sequence $\{g_n\}, g_n = f_n^n$, for all $n \geq 1$, is a subsequence of $\{f_n\}$ which converges at every x_j .