
MMAT5270 Introduction to Inverse Problems

Assignment 1

1 Problems:
3.2 Galerkin Discretization of Gravity Problem

As an example of the use of the Galerkin discretization method, discretize the gravity surveying problem
from Section 2.1 with the "top hat" functions φj(t) = χj(t) in (3.7) as the basis functions, and the functions
ψ(s) = δ(s − si) with si = (i − 1

2 )h (corresponding to sampling the right-hand side at the si). Derive an
expression for the matrix elements aij based on (3.5).

Solution.

First, we have the "top hat" function φj(t) = χj(t) =

{
h−

1
2 , t ∈ [(j − 1)h, jh]

0, elsewhere.
Then, the matrix elements are given by:

aij =

ˆ 1

0

ˆ 1

0

ψi(s)K(s, t)φj(t)ds dt

=

ˆ 1

0

ˆ 1

0

δ(s− si)K(s, t)ds φj(t)dt

=

ˆ 1

0

K(si, t)φj(t)dt

= h−
1
2

ˆ jh

(j−1)h

K(si, t)dt

3.3 Derivation of Important SVD Expressions
Give the details of the derivation of the important equations (3.9) and (3.10), as well as the expression (3.11)
for the naive solution.
The solution xLS to the linear least squares problem minx‖Ax− b‖2 is formally given by xLS = (ATA)−1AT b,
under the assumption that A has more rows than columns and ATA has full rank. Use this expression together
with the SVD to show that xLS has the same SVD expansion (3.11) as the naive solution.

Solution.
First, we prove equations (3.9):

Avi = σiui, ‖Avi‖2= σi, i = 1, . . . , n.

Proof:

Avi =

n∑
j=1

ujσjv
T
j vi

=

n∑
j=1

ujσjδij

= uiσiδii

= σiui

‖Avi‖2 = ‖σiui‖2= σi‖ui‖2= σi.
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Next, we prove equations (3.10):

A−1ui = σ−1
i vi, ‖A−1ui‖2= σ−1

i , i = 1, . . . , n.

Proof: By equations (3.9):

Avi = σiui

A−1Avi = A−1σiui

vi = σiA
−1ui

σ−1
i vi = A−1ui

‖A−1ui‖2 = ‖σ−1
i vi‖2= σ−1

i ‖vi‖2= σ−1
i .

Last, we prove equations (3.11):

x = A−1b =

n∑
i=1

uTi b

σi
vi.

Proof: First note that since the matrix V is orthogonal, we can always write the vector x in the form

x = V V Tx = V

v
T
1 x
...

vTnx

 =

n∑
i=1

(vTi x)vi,

and similarly for b we have

b =

n∑
i=1

(uTi b)ui.

When we use the expression for x, together with the SVD, we obtain

Ax = A

n∑
i=1

(vTi x)vi

=

n∑
i=1

(vTi x)Avi

=

n∑
i=1

(vTi x)σiui

=

n∑
i=1

σi(v
T
i x)ui

By equating the expressions for A x and b, and comparing the coefficients in the expansions, we have

uTi b = σi(v
T
i x), i = 1, . . . , n

Hence, we get

x =

n∑
i=1

(vTi x)vi

=

n∑
i=1

uTi b

σi
vi.

For the case of linear least squares problem, we have

ATA = (UΣV T )TUΣV T = (V ΣUT )UΣV T = V Σ2V T =

n∑
i=1

viσ
2vTi .
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Then, we use the above expression for ATA, we obtain

ATAxLS =

n∑
i=1

viσ
2
i v

T
i xLS

=

n∑
i=1

viσ
2
i (vTi xLS)

=

n∑
i=1

σ2
i (vTi xLS)vi

Also, we have

AT b =

n∑
i=1

viσiu
T
i b

=

n∑
i=1

viσi(u
T
i b)

=

n∑
i=1

σi(u
T
i b)vi

Comparing the coefficients in the expansions, we have

σi(u
T
i b) = σ2

i (vTi xLS), i = 1, . . . , n

Hence, we get

xLS =

n∑
i=1

(vTi xLS)vi

=

n∑
i=1

uTi b

σi
vi.

3.4 SVD Analysis of the Degenerate Kernel Problem This exercise illustrates the use of the SVD analysis technique,
applied to the problem with a degenerate kernel from Exercise 2.2.
The midpoint quadrature rule plus collocation in the quadrature abscissas lead to a discretized problem with
a matrix A whose elements are given by

aij = h

(
(i+ 2j − 3

2
)h− 3

)
, i, j = 1, 2, . . . , n

with h = 2/n. Show that the quadrature abscissas are tj = −1 + (j − 1
2 )h for j = 1, . . . , n, and verify the

above equation for aij .
Show that the columns of A are related by

ai,j+1 + ai,j−1 = 2ai,j , i = 1, . . . , n, j = 2, . . . , n− 1,

and, consequently, that the rank of A is 2 for all n ≥ 2. Verify this experimentally by computing the SVD of
A for different values of n.
Since, for this matrix, A = u1σ1v

T
1 + u2σ2v

T
2 , it follows that Ax is always a linear combination of u1 and u2

for any x. Show this. Then justify (e.g., by plotting the singular vectors u1 and u2) that linear combinations
of these vectors represent samples of a linear function, in accordance with the results from Exercise 2.2.

Solution.
For the midpoint rule in the interval [0, 1], we have

tj =
j − 1

2

n
, ωj =

1

n
, j = 1, 2, . . . , n.
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Then, by mapping from [0, 1] to [−1, 1], we have

tj = −1 +
(j − 1

2 )2

n
= −1 + (j − 1

2
)h, ωj =

2

n
= h, j = 1, 2, . . . , n.

The matrix A whose elements are given by

aij = ωjK(si, tj)

= h(si + 2tj)

= h

(
−1 + (i− 1

2
)h+ 2(−1 + (j − 1

2
)h)

)
= h

(
(i+ 2j − 3

2
)h− 3

)
For the column of A, we have

ai,j+1 + ai,j−1 = h

(
(i+ 2(j + 1)− 3

2
)h− 3

)
+ h

(
(i+ 2(j − 1)− 3

2
)h− 3

)
= h

(
(2i+ 2j − 2 · 3

2
)h− 6

)
= 2ai,j

Then, we have
ai,j+1 − ai,j = ai,j − ai,j−1, i = 1, . . . , n, j = 2, . . . , n− 1.

Let aj be the jth column of A and vector e := a2 − a1.Then we have

e = aj − aj−1, j = 2, . . . , n.

For j = 2, . . . , n, we have
aj = a1 + (j − 1)e

Hence, the span of the column vectors is generated by the first column and e. The rank of A is 2 for all n ≥ 2.

Asumme A = u1σ1v
T
1 + u2σ2v

T
2 , we have

Ax = u1σ1v
T
1 x+ u2σ2v

T
2 x = σ1(vT1 x)u1 + σ2(vT2 x)u2,

it follows that Ax is always a linear combination of u1 and u2 for any x.

3.6 SVD Analysis of a One-Dimensional Image Reconstruction Problem

The purpose of this exercise is to illustrate how the SVD can be used to analyze the smoothing effects of
a first-kind Fredholm integral equation. We use the one-dimensional reconstruction test problem, which is
implemented in Regularization Tools as function shaw. The kernel in this problem is given by

K(s, t) = (cos(s) + cos(t))
2

(
sin(π(sin(s) + sin(t)))

π(sin(s) + sin(t))

)2

,

−π/2 ≤ s, t ≤ π/2, while the solution is

f(t) = 2 exp(−6(t− 0.8)2) + exp(−2(t+ 0.5)2).

This integral equation models a situation where light passes through an infinitely long slit, and the function
f(t) is the incoming light intensity as a function of the incidence angle t. The problem is discretized by means
of the midpoint quadrature rule to produce A and xexact, after which the exact right-hand side is computed
as bexact = Axexact. The elements of bexact represent the outgoing light intensity on the other side of the slit.

Choose n = 24 and generate the problem. Then compute the SVD of A, and plot and inspect the left and
right singular vectors. What can be said about the number of sign changes in these vectors?
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Use the function picard from Regularization Tools to inspect the singular values σi and the SVD coefficients
uTi b

exact of the exact solution bexact, as well as the corresponding solution coefficients uTi bexact/σi. Is the
Picard condition satisfied?

Add a very small amount of noise e to the right-hand side bexact, i.e., b = bexact + e, with ‖e‖2/‖bexact‖2=
10−10. Inspect the singular values and SVD coefficients again. What happens to the SVD coefficients uTi b
corresponding to the small singular values?

Prelude to the next chapter: Recall that the undesired "naive" solution x = A−1b can be written in terms of
the SVD as (3.11). Compute the partial sums

xk =

k∑
i=1

uTi b

σi
vi

for k = 1, 2, . . . , and inspect the vectors xk . Try to explain the behavior of these vectors.

Solution.

[A,b,x] = shaw(24);
[U,S,V] = svd(A);

s=diag(S);
eta = picard(U,s,b);

e=randn(size(b));
e=e/norm(r1)*norm(b)*10^(-10);
be=b+e;
eta = picard(U,s,be);

clear pn
xe=(U(:,1)’*be/s(1))*V(:,1);
pn(1)=norm(x-xe)
for i=2:16

xe=xe+(U(:,i)’*be/s(i))*V(:,i)
pn(i)=norm(x-xe)

end
plot(pn)

Figure 1,2 show the first nine left singular vectors ui, vi for the gravity surveying problem. We see that the
singular vectors have more oscillations as the index i increases, i.e., as the corresponding σi decrease.

Figure 3 shows that the Picard condition is satisfied. Figure 4 show that the SVD coefficients uTi b remain
above the noise level.

Figure 5 shows that the norm of error decrease first and attain a minimum. Then it will increase since it is
an ill-posed problem and there are small singular values σi.
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Figure 1: The first 9 left singular vectors ui
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Figure 2: The first 9 left singular vectors vi
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Figure 3: The Picard plots for exact solution
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Figure 4: The Picard plots for noisy solution
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Figure 5: The norm of x− xk
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