Solution 5

Hand in Ex 3.2, no. 3, Supp. Ex no. 4, 7 by March 7. Ex 3.2

1. Show that $\{(2/l)^{1/2} \sin(n - \frac{1}{2})\}$ $\frac{1}{2}$)($\pi x/l$) $\}^{\infty}$ is an orthonormal set in $PC(0, l)$. **Solution.** Let $\psi_n(x) = (2/l)^{1/2} \sin(n - \frac{1}{2})$ $(\frac{1}{2})(\pi x/l)$. Then, for $m, n \geq 1$,

$$
\langle \psi_n, \psi_m \rangle = \int_0^l (2/l)^{1/2} \sin(n - \frac{1}{2}) (\pi x/l) (2/l)^{1/2} \sin(m - \frac{1}{2}) (\pi x/l) dx
$$

\n
$$
= \frac{2}{l} \int_0^l \sin(n - \frac{1}{2}) (\pi x/l) \sin(m - \frac{1}{2}) (\pi x/l) dx
$$

\n
$$
= \frac{1}{l} \int_0^l (\cos(n - m) (\pi x/l) - \cos(n + m - 1) (\pi x/l)) dx
$$

\n
$$
= \frac{1}{l} \int_0^l \cos(n - m) (\pi x/l) dx
$$

\n
$$
= \begin{cases} 1 & \text{if } n = m, \\ 0 & \text{otherwise,} \end{cases}
$$

since $n + m \neq 1$. Hence $\{(2/l)^{1/2} \sin(n - \frac{1}{2})\}$ $\frac{1}{2}$)($\pi x/l$) $\}^{\infty}$ is an orthonormal set in $PC(0, l)$.

3. Show that $f_0(x) = 1$ and $f_1(x) = x$ are orthogonal on [−1, 1], and find constants a and b so that $f_2(x) = x^2 + ax + b$ are orthogonal to both f_0 and f_1 on [-1,1]. What are the normalizations of f_0 , f_1 and f_2 ?

Solution. f_0 and f_1 are orthogonal since

$$
\langle f_0, f_1 \rangle = \int_{-1}^1 1 \cdot x dx = \left. \frac{x^2}{2} \right|_{-1}^1 = 0.
$$

If f_2 is orthogonal to both f_0 and f_1 , then

$$
0 = \langle f_0, f_2 \rangle = \int_{-1}^{1} (x^2 + ax + b) dx = \left[\frac{x^3}{3} + \frac{ax^2}{2} + bx \right]_{-1}^{1} = \frac{2}{3} + 2b,
$$

and

$$
0 = \langle f_1, f_2 \rangle = \int_{-1}^{1} x(x^2 + ax + b) dx = \left[\frac{x^4}{4} + \frac{ax^3}{3} + \frac{bx^2}{2} \right]_{-1}^{1} = \frac{2a}{3}.
$$

Hence $a = 0$ and $b = -\frac{1}{3}$ $\frac{1}{3}$. Since

$$
||f_0|| = \sqrt{2}
$$
, $||f_1|| = \sqrt{\frac{2}{3}}$, $||f_2|| = \sqrt{\frac{8}{45}}$,

their normalizations are given by

$$
\frac{1}{\sqrt{2}}, \quad \sqrt{\frac{3}{2}}x, \quad \sqrt{\frac{5}{2}}\left(\frac{3}{2}x^2 - \frac{1}{2}\right).
$$

4. Suppose $\{\phi_n\}$ is an orthonormal set in $PC(0, l)$, and let ϕ_n^+ and ϕ_n^- be the even and odd extension of ϕ to $[-l, l]$. Show that $\{2^{-1/2}\phi_n^+\} \cup \{2^{-1/2}\phi_n^-\}$ is an orthonormal set in $PC(-l, l).$

Solution. Note that

$$
\langle \phi_n^+, \phi_m^+ \rangle = \int_{-l}^{l} \phi_n^+(x) \phi_m^+(x) dx
$$

=
$$
\int_0^{l} \phi_n^+(x) \phi_m^+(x) dx + \int_{-l}^{0} \phi_n^+(x) \phi_m^+(x) dx
$$

=
$$
\int_0^{l} \phi_n(x) \phi_m(x) dx + \int_0^{l} \phi_n(x) \phi_m(x) dx
$$

=
$$
\begin{cases} 2 & \text{if } n = m, \\ 0 & \text{otherwise.} \end{cases}
$$

Hence $\{2^{-1/2}\phi_n^+\}$ is an orthonormal set in $PC(-l, l)$. Similarly, one can show that $\{2^{-1/2}\phi_n^-\}\$ is an orthonormal set in $PC(-l, l)$. It remains to show that $\langle \phi_n^+, \phi_m^- \rangle = 0$ for all m, n . Indeed,

$$
\langle \phi_n^+, \phi_m^- \rangle = \int_{-l}^{l} \phi_n^+(x) \phi_m^-(x) dx \n= \int_{0}^{l} \phi_n^+(x) \phi_m^-(x) dx + \int_{-l}^{0} \phi_n^+(x) \phi_m^-(x) dx \n= \int_{0}^{l} \phi_n^+(x) \phi_m^-(x) dx + \int_{l}^{0} \phi_n^+(-x) \phi_m^-(-x) (-dx) \n= \int_{0}^{l} \phi_n(x) \phi_m(x) dx + \int_{0}^{l} \phi_n(x) (-\phi_m(x)) dx \n= 0.
$$

Supplementary Exercise. The space $R[a, b]$ consisting of all Riemann integrable functions is endowed with the inner product

$$
\langle f, g \rangle = \int_a^b f(x)g(x)dx.
$$

Set $||f|| = \sqrt{\langle f, f \rangle}.$

1. Let $\{v_j\}_{j=1}^N$, $N \leq \infty$, be an orthonormal set in V. Prove Bessel's inequality

$$
\sum_{j=1}^{N} \langle v, v_j \rangle^2 \le ||v||^2.
$$

Solution. First assume that $N < \infty$. By expanding the inner product, we have

$$
0 \leq \left\| v - \sum_{j=1}^{N} \langle v, v_j \rangle v_j \right\|^2 = \left\langle v - \sum_{j=1}^{N} \langle v, v_j \rangle v_j, v - \sum_{j=1}^{N} \langle v, v_j \rangle v_j \right\rangle
$$

= $\langle v, v \rangle - \sum_{j=1}^{N} \overline{\langle v, v_j \rangle} \langle v, v_j \rangle - \sum_{j=1}^{N} \langle v, v_j \rangle \langle v_j, v \rangle + \sum_{j=1}^{N} \langle v, v_j \rangle \overline{\langle v, v_j \rangle}$
= $||v|| - \sum_{j=1}^{N} |\langle v, v_j \rangle|^2$.

Rearranging yields the inequality

$$
\sum_{j=1}^{N} \langle v, v_j \rangle^2 \le ||v||^2.
$$

The same inequality holds when $N = \infty$ since each summand is non-negative.

2. Establish Cauchy-Schwarz inequality $|\langle u, v \rangle| \le ||u|| ||v||$ in an inner product space and then use it to prove the triangle inequality

$$
||u + v|| \le ||u|| + ||v||.
$$

Do it in both real and complex cases.

Solution. By expanding the inner product, we have

$$
0 \leq \left\| u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v \right\|^2 = \left\langle u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v, u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v \right\rangle
$$

= $\langle u, u \rangle - \frac{\overline{\langle u, v \rangle}}{\langle v, v \rangle} \langle u, v \rangle - \frac{\langle u, v \rangle}{\langle v, v \rangle} \langle v, u \rangle + \frac{\langle u, v \rangle}{\langle v, v \rangle} \overline{\langle v, v \rangle} \langle v, v \rangle$
= $||u||^2 - \frac{|\langle u, v \rangle|^2}{||v||^2} - \frac{|\langle u, v \rangle|^2}{||v||^2} + \frac{|\langle u, v \rangle|^2}{||v||^2}$
= $||u||^2 - \frac{|\langle u, v \rangle|^2}{||v||^2}.$

Rearranging yields the Cauchy-Schwarz inequality. Using the Cauchy-Schwarz inequality, we have

$$
||u + v||2 = \langle u + v, u + v \rangle
$$

= $\langle u, u \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle} + \langle v, v \rangle$
= $||u||^{2} + 2\text{Re}\langle u, v \rangle + ||v||^{2}$
 $\leq ||u||^{2} + 2|\langle u, v \rangle| + ||v||^{2}$
 $\leq ||u||^{2} + 2||u||||v|| + ||v||^{2}$
= $(||u|| + ||v||)^{2}$.

Taking square root on both sides yields the triangle inequality.

3. Show that for $f \in R[a, b],$

$$
||f|| \le \sqrt{b-a} ||f||_{\infty},
$$

Solution.

$$
||f||^2 = \int_a^b |f(x)|^2 dx \le \int_a^b ||f||_{\infty}^2 dx = (b-a)||f||_{\infty}^2.
$$

Taking square root on both sides we have

$$
||f|| \le \sqrt{b-a} ||f||_{\infty}.
$$

It is clear that f_n tends to f in L^2 -norm if f_n tends to f uniformly since

$$
||f_n - f|| \le \sqrt{b - a} ||f_n - f||_{\infty}
$$

To see that the converse is not true, consider, on $[0, 1]$, the sequence

$$
f_n(x) = \begin{cases} n & x = 0\\ \text{linear} & 0 < x < \frac{1}{n^2} \\ 0 & \frac{1}{n^2} \le x \le 1. \end{cases}
$$

Then $||f_n|| = \frac{1}{\sqrt{2}}$ $\frac{1}{2n}$, so that f_n converges to 0 in L^2 -norm. On the other hand, $||f_n||_{\infty} = n$, hence f_n does not converge uniformly (as it is not bounded in sup-norm).

4. The sequence ${f_n}$ is called pointwisely convergent to f if $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in [a, b]$. Construct (a) a pointwisely convergent but not L^2 -convergent sequence, and (b) an L^2 -norm convergent but not pointwisely convergent sequence. You may work on [0, 1].

Solution.

(a) Consider the sequence

$$
f_n(x) = \begin{cases} 2n^2x & 0 \le x \le \frac{1}{2n}, \\ 2n(1 - nx) & \frac{1}{2n} < x \le \frac{1}{n}, \\ 0 & \frac{1}{n} < x \le 1. \end{cases}
$$

Then $f_n(x)$ converges to 0 for every $x \in [0,1]$. However,

$$
||f_n||^2 = \int_0^{\frac{1}{2n}} (2n^2x)^2 dx + \int_{\frac{1}{2n}}^{\frac{1}{n}} (2n(1 - nx))^2 dx
$$

= $2 \int_0^{\frac{1}{2n}} 4n^4x^2 dx$
= $\frac{n}{3}$.

Hence $\{f_n\}$ is pointwisely convergent to 0 but not L^2 -convergent (as it is unbounded in L^2 -norm).

(b) Consider the sequence f_n defined in Question 3. Then $\{f_n\}$ is L^2 -convergent to 0 but not pointwisely convergent (since $f_n(0) \to \infty$).

5. Let W be a subspace in V and $\{w_1, \ldots, w_n\}$ be an orthonormal basis of W. Suppose that $w_1 \in W$ satisfies $\langle u-w_1, w \rangle = 0$ for all $w \in W$. Show that w_1 is the orthogonal projection of u on W.

Solution. Let $w \in W$. Since $w_1 - w \in W$, we have $\langle u - w_1, w_1 - w \rangle = 0$, and hence,

$$
||u - w||2 = \langle (u - w1) + (w1 - w), (u - w1) + (w1 - w) \rangle
$$

= ||u - w₁||² + \langle u - w₁, w₁ - w \rangle + \langle w₁ - w, u - w₁ \rangle + ||w₁ - w||²
= ||u - w₁||² + ||w₁ - w||²
\ge ||u - w₁||².

Thus

$$
||u - w_1|| \le ||u - w|| \qquad \text{for all } w \in W.
$$

By Theorem 4.1, w_1 is the orthogonal projection of u on W.

6. Verify that the orthogonal projection of f on the subspace E_n (see page 3, Note 4) is equal to $S_n f$, the *n*-th partial sum of the Fourier series of f.

Solution.

Recall that

$$
E_n = \left\langle \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \cos jx, \frac{1}{\sqrt{\pi}} \sin jx \right\rangle_{j=1}^n
$$

.

By Theorem 4.1, the orthogonal projection of f on E_n is given by

$$
w^* = \langle f, \frac{1}{\sqrt{2\pi}} \rangle \frac{1}{\sqrt{2\pi}} + \sum_{j=1}^n \langle f, \frac{1}{\sqrt{\pi}} \cos jx \rangle \frac{1}{\sqrt{\pi}} \cos jx + \sum_{j=1}^n \langle f, \frac{1}{\sqrt{\pi}} \sin jx \rangle \frac{1}{\sqrt{\pi}} \sin jx
$$

\n
$$
= \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{2\pi}} dx \frac{1}{\sqrt{2\pi}} + \sum_{j=1}^n \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{\pi}} \cos jx dx \frac{1}{\sqrt{\pi}} \cos jx
$$

\n
$$
+ \sum_{j=1}^n \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{\pi}} \sin jx dx \frac{1}{\sqrt{\pi}} \sin jx
$$

\n
$$
= \frac{a_0}{2} + \sum_{j=1}^n (a_n \cos jx + b_n \sin jx)
$$

\n
$$
= S_n f.
$$

7. Establish the identity

$$
\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2},
$$

by looking at the Parseval's identity for the function $f(x) = x$. **Solution.** Recall that $f(x) = x \sim 2 \sum_{n=1}^{\infty}$ $(-1)^{n+1}$ $\frac{1}{n}$ sin nx. By Parseval's identity, \int_0^π $-\pi$ $x^2 dx = \frac{\pi}{2}$ $\frac{\pi}{2}0^2 + \pi \sum_{n=1}^{\infty}$ $0^2 + \left(\frac{2(-1)^{n+1}}{n}\right)$ n \setminus^2

$$
\frac{2\pi^3}{3} = 4\pi \sum_{n=1}^{\infty} \frac{1}{n^2}
$$

Rearranging the terms yields $\frac{\pi^2}{6}$ $\frac{\pi^2}{6} = \sum_{n=1}^{\infty}$ $n=1$ 1 $rac{1}{n^2}$.