Origami and Mathematics New Wave Mathematics 2018

Andrew Kei Fong LAM (kflam@math.cuhk.edu.hk)

Department of Mathematics The Chinese University of Hong Kong ¹

Table of Content

- 1) About Origami (摺紙背景)
- 2) Origami for Mathematics a) Fujimoto's $1/5$ th approximation (藤本 $1/5$ th 估計) b) Trisecting angles (三等分角度) c) Solving cubic equations (三次方程)
- 3) Mathematics for (flat) Origami a) Maekawa's theorem (前川定理) b) Kawasaki's theorem (川崎定理)

About Origami

China?

Reason: Paper invented in China around 105 A.D.

› use for padding and wrapping bronze mirror. › use for writing by 400 A.D. › use for toilet by 700 A.D. › use for money by 960 A.D.

Sources: https://en.wikipedia.org/wiki/Bronze_mirror https://ancientchina132.weebly.com/writing-material.html http://blog.toiletpaperworld.com/toilet-paper-challenge/ http://www.thecurrencycollector.com/chinesebanknotes.html

ABOUT ORIGAMI 5

Japan?

Reason: Origami comes from the words "ori" (to fold) and "kami" (paper).

- › Japanese monks used paper for ceremonial purposes around 600 A.D.
- › Origami butterflies appear in Japanese Shinto weddings around 1600s.
- › First origami book "Sembazuru Orikata" (Secret Techniques of Thousand Crane Folding) published in 1797.

Sources: http://origami.ousaan.com/library/historye.html https://en.wikipedia.org/wiki/History_of_origami https://allabout -japan.com/en/article/4425/ https://www.origami -resource -center.com/butterfly.html

Europe?

- › picture of paper boat found in a medieval astronomy text Tractatus de Sphera Mundi published in 1490.
- › references of "paper prison (紙籠)" in a English play (Duchess of Mafia) by John Webster, in 1623.
- › an Italian book by Matthias Geiger, published in 1629, for folding table napkins (餐巾)

ABOUT ORIGAMI 7 Sources: http://origami.ousaan.com/library/historye.html https://en.wikipedia.org/wiki/History_of_origami http://www.britishorigami.info/academic/lister/german.php http://search.getty.edu/gri/records/griobject?objectid=242745552 http://www.florilegium.org/?http%3A//www.florilegium.org/files/CRAFTS/Paper-Folding-art.html

Modern Origami

- › Origami is now viewed as a puzzle – follow a sequence of folds to get a shape.
- › Each origami can be unfolded to give a *crease* pattern.

ABOUT ORIGAMI 8 Source: https://i.pinimg.com/736x/e6/d9/30/e6d930629820c816130fa6d24939bdbc--origami-birdsorigami-cranes.jpg http://mathworld.wolfram.com/images/eps-gif/KawasakiCrane_1000.gif

π Miura-map fold for solar panels

ORIGAMI IN TECHNOLOGY 9 https://www.comsol.com/blogs/solving-space-problem-origami-principles/Source: https://engineering.nd.edu/spotlights/1BusEng1st20004000TurnerApplicationPackageComplete.pdf

Source: https://www.zmescience.com/science/vacuum-fold-actuators-mit/

https://www.news-medical.net/news/20171127/Origami-inspired-artificial-muscles-can-lift-1000-times-their-weight.aspx https://www.thetimes.co.uk/article/origami-inspired-muscles-bring-super-strong-robots-a-step-closer-j8b6k3899

ORIGAMI IN TECHNOLOGY 10

The BIG question (Inverse problem 逆問題)

› Given an origami, find a crease pattern and the instructions that will lead to the origami.

?

 \mathcal{T}

› Some work on this (Treemaker – Robert J. Lang), (Origamizer - Tomohiro Tachi)

Origami constructions (摺紙建築)

- › During the folding process, you may have to create creases at specific points of the paper, e.g., 1/3th along the border.
- › Within origami, there is an interest in creating these points just by folding.
- › This has overlaps with the mathematical field of geometric constructions (幾何建築) e.g. bisect angles, finding the center of a circle, construction of triangles.

Source:

Origami for mathematics

Fujimoto's approximation (藤本估計) \rightarrow Dividing a piece of paper into $\frac{1}{2}$ 2 , 1 4 , 1 8 , 1 16 … is easy to do.

 \rightarrow But what if you want to divide into equal $\frac{1}{2}$ 3 or 1 5 ? E.g., fold a letter into an envelop?

Fujimoto's approximation › FUJIMOTO Shuzo (藤本修三)

- high school teacher in Japan;
- wrote a book <<编织折纸>> in 1976 and introduced how to fold patterns

Source: http://blog.sina.com.cn/s/blog_416862f50100mzyf.html http://www.allthingspaper.net/

Fujimoto's approximation

> Step 1: Make a guess where 1/5th mark is.

Source: http://www.teachersofindia.org/sites/default/files/5_how_do_you_divide_a_strip_into_equal_fifths.pdf

Fujimoto's approximation

 \rightarrow Step 2: The right side is roughly 4/5 of the paper. Pinch this side in half.

Fujimoto's approximation

 \rightarrow Step 3: The pinch 2 is near 3/5th mark and the right side is roughly $2/5$ of the paper. Pinch the right side in half.

FUJIMOTO'S APPROXIMATION 18 Source: http://www.teachersofindia.org/sites/default/files/5_how_do_you_divide_a_strip_into_equal_fifths.pdf

Fujimoto's approximation

 \rightarrow Step 4: The pinch 3 is near $4/5$ th mark and the left side of is roughly $4/5$ of the paper. Pinch the left side in half.

FUJIMOTO'S APPROXIMATION 19 Source: http://www.teachersofindia.org/sites/default/files/5_how_do_you_divide_a_strip_into_equal_fifths.pdf

Fujimoto's approximation

 \rightarrow Step 5: The pinch 4 is near 2/5th mark. Pinch the left side side in half. The last pinch is very close to the $1/5$ th mark.

› Repeat steps to get better approximations

Fujimoto's approximation

› Summary:

Why it works?

+1 (Guess Pinch) $1/5 + e$ \rightarrow First guess pinch is at $\frac{1}{5}$ $4/5 - e$ $+$ e . 5 1 4 The right of pinch 1 has length $1 + e$) = $-e$. 5 5

Why it works?

$$
\Rightarrow \text{Position of pinch 2 is } \left(\frac{1}{5} + e\right) + \frac{1}{2}\left(\frac{4}{5} - e\right) = \frac{3}{5} + \frac{e}{2}.
$$

Why it works?

- › More calculation shows at the fifth pinch, we are at the $\frac{1}{5}$ position $\frac{1}{5}$ 5 $+$ \overline{e} 16 .
- › Doing one round of Fujimoto approximation reduces the error by a factor of 16.

Some mathematics….

› A base 2 representation (其二進製) of a fraction (分數) $0 < x < 1$ is $x =$ i_1 2 $+$ $i₂$ 4 $+$ i_3 8 $+$ i_4 16 $+$ i_{5} 32 $+$ $i₆$ $\frac{\iota_6}{64} + \cdots = \sum_{j=1}^{\infty}$ ∞ $\frac{i_j}{j}$ $\frac{y}{2^j}$, where $i_j = 0$ or 1. › 1 5 \lt 1 2 $\rightarrow i_1 = 0$, › 1 5 \lt 1 4 $\rightarrow i_2 = 0$, › 1 5 = 8 40 > 1 8 = 5 40 $\rightarrow i_3 = 1,$

Some mathematics….

› The base 2 representation (其二進製) of $\frac{1}{5}$ 5 is 1 5 = 0 2 $+$ 0 4 $+$ 1 8 $+$ i_4 16 $+$ i_{5} 32 $+$ $i₆$ 64 $+ \cdots$ › 1 5 = 16 80 > 1 8 $+$ 1 16 = 15 80 $\rightarrow i_4 = 1$, › 1 5 = 32 160 \lt 1 8 $+$ 1 16 $+$ 1 32 = 35 160 $\to i_5 = 0 ...$

Base 2 representation of $\frac{1}{5}$ 5

> So, the base 2 representation (其二進製) of $\frac{1}{5}$ 5 is

$$
\frac{1}{5} = \frac{0}{2} + \frac{0}{4} + \frac{1}{8} + \frac{1}{16} + \frac{0}{32} + \frac{0}{64} + \dots = (0, \overline{0011})_2
$$

 \rightarrow Label 1 as folding right and 0 as folding left, then reading backwards, we do:

(right x 2)-(left x 2)-(right x 2)-(left x 2) ...

Base 2 representation of $\frac{1}{5}$ 5

- \rightarrow (right x 2)-(left x 2)-(right x 2)-(left x 2) ...
- \rightarrow Exactly as the Fujimoto's $1/5$ th approximation:

 (5)

› COINCIDENCE?

Fujimoto's approximation for equal $\frac{1}{2}$ th

› Another example

$$
\frac{1}{3} = \frac{i_1}{2} + \frac{i_2}{4} + \frac{i_3}{8} + \frac{i_4}{16} + \frac{i_5}{32} + \frac{i_6}{64} + \dots
$$

$$
\frac{1}{3} < \frac{1}{2} \quad \rightarrow i_1 = 0,
$$
\n
$$
\frac{1}{3} > \frac{1}{4} \quad \rightarrow i_2 = 1,
$$
\n
$$
\frac{1}{3} = \frac{8}{24} < \frac{1}{4} + \frac{1}{8} = \frac{9}{24} \quad \rightarrow i_3 = 0,
$$

Fujimoto's approximation for equal $\frac{1}{2}$ th

› Another example

$$
\frac{1}{3} = \frac{0}{2} + \frac{1}{4} + \frac{0}{8} + \frac{i_4}{16} + \frac{i_5}{32} + \frac{i_6}{64} + \dots
$$

$$
\frac{1}{3} = \frac{8}{24} < \frac{1}{4} + \frac{1}{8} = \frac{9}{24} \rightarrow i_3 = 0,
$$

$$
\frac{1}{3} = \frac{16}{48} > \frac{1}{4} + \frac{1}{16} = \frac{15}{48} \rightarrow i_4 = 1,
$$

$$
\frac{1}{3} = \frac{32}{96} < \frac{1}{4} + \frac{1}{16} + \frac{1}{32} = \frac{33}{96} \rightarrow i_5 = 0 \dots
$$

Fujimoto's approximation for equal $\frac{1}{2}$ 3 th

 \rightarrow So, the base 2 representation of $\frac{1}{2}$ 3 is

$$
\frac{1}{3} = \frac{0}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16} + \frac{0}{32} + \frac{1}{64} + \dots = (0, \overline{01})_2
$$

 \rightarrow Label 1 as folding right and 0 as folding left, then reading backwards, the action is:

(right)-(left)-(right)-(left) …

Example: $\frac{1}{2}$ 3 $= (0, 01)_2$

› After initial guess, we fold right-left-right-left-right-left-….

Source: Robert Lang – Origami and Construction FUJIMOTO'S APPROXIMATION 32

 $\left| \mathcal{T}\right|$

Another example

$$
\frac{1}{7} = \frac{i_1}{2} + \frac{i_2}{4} + \frac{i_3}{8} + \frac{i_4}{16} + \frac{i_5}{32} + \frac{i_6}{64} + \dots
$$

$$
\begin{array}{ccc}\n & \searrow & \frac{1}{7} < \frac{1}{2} & \rightarrow & i_1 = 0, \\
& \searrow & \frac{1}{7} < \frac{1}{4} & \rightarrow & i_2 = 0, \\
& \searrow & \frac{1}{7} > \frac{1}{8} & \rightarrow & i_3 = 1,\n\end{array}
$$

 \overline{a}

Another example

$$
\frac{1}{7} = \frac{0}{2} + \frac{0}{4} + \frac{1}{8} + \frac{i_4}{16} + \frac{i_5}{32} + \frac{i_6}{64} + \dots
$$

$$
\frac{1}{7} = \frac{16}{112} < \frac{1}{8} + \frac{1}{16} = \frac{21}{112} \rightarrow i_4 = 0,
$$
\n
$$
\frac{1}{7} = \frac{32}{224} < \frac{1}{8} + \frac{1}{32} = \frac{35}{224} \rightarrow i_5 = 0,
$$
\n
$$
\frac{1}{7} = \frac{64}{448} > \frac{1}{8} + \frac{1}{64} = \frac{63}{448} \rightarrow i_6 = 1,
$$

Fujimoto's approximation for equal $\frac{1}{7}$ 7 th

 \rightarrow So, the base 2 representation of $\frac{1}{5}$ 7 is

$$
\frac{1}{7} = \frac{0}{2} + \frac{0}{4} + \frac{1}{8} + \frac{0}{16} + \frac{0}{32} + \frac{1}{64} + \dots = (0, \overline{001})_2
$$

 \rightarrow Label 1 as folding right and 0 as folding left, then reading backwards, the action is:

(right)-(left x2)-(right)-(left x2) …

General (一般性) procedure for $\frac{1}{N}$ \overline{N}

 \rightarrow Step 1: Write $\frac{1}{N}$ \overline{N} in terms of the binary representation. › Example:

$$
\frac{1}{3} = (0.\overline{01})_2, \qquad \frac{1}{7} = (0.\overline{001})_2, \qquad \frac{1}{9} = (0.\overline{000111})_2
$$

- \rightarrow Step 2: Make guess at where the $\frac{1}{N}$ \overline{N} th mark is.
- › Step 3: Following the binary representation after the decimal point reading backwards. Fold left for 0 and fold right for 1.
Application to Miura map folding

Angle bisection (角度平分)

› Problem: Use only compass (圓規) and a straight edge (E) to divide an angle θ into half.

Source: http://mathforum.org/sanders/geometry/GP05Constructions.html

Angle trisection (角度三平分)

- › Problem: Use only compass and a straight edge to divide an angle θ into equal thirds.
- Compass

› Pierre WANTZEL (1814-1848) showed that it is *impossible* to do it with only a compass and a straight edge.

› But we can do this with origami!

Source: https://3010tangents.wordpress.com/tag/pierre-wantzel/ https://paginas.matem.unam.mx/cprieto/biografias-de-matematicos-uz/237-wantzel-pierre-laurent

ANGLE TRISECTION 39

Acute angle (銳角) trisection with folding \rightarrow ABE Tsune developed a method for angles θ < 90°.

 \rightarrow Setting: Trisect the angle *PBC*

Source: Robert Lang – Origami and Construction

(Acute) Angle trisection with folding

> Step 1: Fold any line parallel $(\overline{H}\overline{T})$ to BC and create newline EF

(Acute) Angle trisection with folding

 \rightarrow Step 2: Fold BC to EF to create newline GH. Then BG, GE, CH and HF have the same length.

(Acute) Angle trisection with folding

 \rightarrow Step 3: Fold corner B so that point E is on line BP and point B is on the line GH .

(Acute) Angle trisection with folding \rightarrow Step 4: Create a new line by folding B to E. Then unfold.

Source: Robert Lang – Origami and Construction

 π

(Acute) Angle trisection with folding

 \rightarrow Step 5: Extend new line to get *BJ*, then bring line *BC* to BJ, and unfold again.

(Acute) Angle trisection with folding › The angle is now trisected.

Source: Robert Lang – Origami and Construction

π Revision – Congruent (全等) triangles

› Two triangles are congruent if they have the same three sides and exactly the same angles.

Source: https://www.mathsisfun.com/geometry/triangles-congruent.html

Why it works?

- ↑ 1) $EG = GB$ and so $E^*G^* = G^*B^*$.
- > 2) BG*perpendicular (垂直) to E^*B^* , so ΔBE^*G^* is congruent to ∆BG^{*}B^{*} (Side-Angle-Side).
- (3) $B^*K = G^*B^*$ and $BG^* = BK$, so ∆BG*B* is congruent to ∆ [∗] (Side-Side-Side)

Revision – equation of a straight line

- \rightarrow Equation of a line is $y = mx +$ $C:$
- › m is the slope (坡度), and c is the intercept (交叉點).
- \rightarrow Two points (x_1, y_1) and (x_2, y_2) on the line, the slope is $|m|$ ${\cal Y}_2 = {\cal Y}_1$ $x_2 - x_1$

› And intercept is

$$
c = y_1 - mx_1 = y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1
$$

Revision - quadratic equations (二次方程) \rightarrow Find solutions x to the equation

$$
ax^2 + bx + c = 0
$$

> This has only two solutions/roots (根) x_1 and x_2 . › Quadratic formula (二次公式)

$$
x_1 = \frac{-b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a}, \qquad x_2 = \frac{-b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}
$$

> Example: $x^2 - 1 = 0$ is $a = 1, b = 0, c = -1$ and has solutions $x_1 = 1$ and $x_2 = -1$.

 \mathcal{T}

Solving cubic equations $(\equiv \chi)$ 程) \rightarrow Find solutions x to the equation

$$
x^3 + ax^2 + bx + c = 0
$$

 \rightarrow This has three solutions/roots x_1, x_2 and x_3 .

- > Example: $x^3 + 3x^2 + 3x + 1 = 0$ has solutions $x_1 = x_2 = 1$ $x_3 = -1.$
- › Cubic formula (三次公式)?

(too complex)

Strategy

 $a+b=c$ ab=d

 \rightarrow Aim: To find one root x_1 to $x^3 + ax^2 + bx + c = 0$.

› Then, factorize (因式分解)

$$
x^3 + ax^2 + bx + c = (x - x_1)(x^2 + ex + f)
$$

 \rightarrow Use quadratic formula on $x^2 + e x + f = 0$ to find the other two roots x_2 and x_3 .

Source: https://en.wikipedia.org/wiki/Factorization

Solving $x^3 + ax^2 + bx + c = 0$ with one fold › Step 1. (c,b) Mark the point $p_1 =$ $(a, 1)$ and $p_2 = (c, b)$ in $(a,1)$ the xy plane. $(0,0)$ Draw the lines $L_1 = \{ y =$ -1 } and $L_2 = \{x = -c\}.$ v=-1 $x=-c$

Solving $x^3 + ax^2 + bx + c = 0$ with one fold

› Step 2.

Fold p_1 to line L_1 and p_2 to line L_2 and create a new crease line.

› The slope of the crease line is a root to $x^3 + ax^2 + bx + c = 0.$

Explanation of why it works???

Maybe we just skip this…..

Folding a parabola

› Fix a point (the focus) and a line (the directrix).

› Draw a curve where the distance between the focus and the curve is the same as the distance between the directrix and the curve.

Folding a parabola

› Mark one side of the paper as the directrix.

- \rightarrow Choose a point ρ anywhere inside the paper and fold the directrix to p over and over again.
- \rightarrow The point ρ will become the focus.

Revision – equation of a straight line

 $2^2 - 2^2$

- \rightarrow Equation of a line is $y = mx +$ $C:$
- › m is the slope, and c is the intercept.
- \rightarrow Given two points (x_1, y_1) and (x_2, y_2) on the line, the slope is

$$
m = \frac{y_2 - y_1}{x_2 - x_1}
$$

› And intercept is

$$
c = y_1 - mx_1 = y_1 - \frac{y_2 - y_1}{x_2 - x_1}x_1
$$

Revision – perpendicular lines

› Blue line has slope

$$
m = \frac{y_2 - y_1}{x_2 - x_1}
$$

- › Red line is perpendicular if the angles at the intersection are 90°
- › So red line has slope

$$
\frac{-1}{m} = \frac{x_1 - x_2}{y_2 - y_1}
$$

Equation of the parabola

- > Fold point $p' = (t, -1)$ to $p = (0,1)$ creates a new crease line M.
- › The red line has slope

$$
m = \frac{-1 - 1}{t - 0} = \frac{-2}{t}
$$

> So *M* has slope $\frac{-1}{m} = \frac{t}{2}$

Equation of the parabola

- $\rightarrow M$ is perpendicular to pp' , so *M* has slope $\frac{-1}{m}$ = $\frac{t}{2}$.
- › The mid point of segment pp^{\prime} , point ($\frac{t}{2}$, 0) lies on M , so $0 =$ \bar{t} 2 \bar{t} 2 $+$ c .
- \triangleright The intercept of M is $c =$ $-t^2$ 2 , and equation of M is $y =$ \overline{t} 2 $(x \bar{t}$ 2)

Equation of the parabola \rightarrow Equation of M is $y =$ \overline{t} 2 $(x \bar{t}$ 2) \rightarrow Point q lies on the parabola is at $t, t^2/4$ › So equation for the parabola is $y = x^2/4$

 $p=(0,1)$

--1

 M_{\geq}

Explanation

- \rightarrow The crease line C is given by the equation $y = tx + u$.
- › The slope is t and the intercept is u .
- › We show $t^3 + at^2 + bt + c = 0.$

 \rightarrow Then t is a solution.

Explanation

- › Draw a parabola with focus $p_1 = (a, 1)$ and directrix $L_1 =$ $\bar{\mathbf{y}} = -1$.
- \rightarrow (v, w) lies on C and also the parabola.
- › Equation of parabola is

$$
y = \frac{1}{4}(x-a)^2
$$

Explanation › Equation of parabola is $y = \frac{1}{4} (x - a)^2$ \rightarrow Slope of C at (v, w) is 1 $\frac{1}{2}(v-a)$ \rightarrow So equation for C is $y = \frac{1}{2} (v - a)x + \left(w - \frac{1}{2}\right)$ $\nu-a)\nu$

Revision – distance between two points

› Pythagoras' Theorem (畢氏 定理)

$$
a^2 + b^2 = c^2
$$

 \rightarrow Distance between (x_1, y_1) and (x_2, y_2) is

$$
c = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
$$

Explanation

> Distance (v, w) , $(v, -1)$ = Distance (v, w) , $(a, 1)$, so

$$
\sqrt{(a-v)^2 + (1-w)^2} = \sqrt{(w+1)^2}
$$

$$
or
$$

$$
(a - v)^2 = 4w
$$

> Set
$$
t = \frac{1}{2}(v - a)
$$
, then $w = t^2$ and
equation for *C* is
 $y = tx + u$,
 $u = -t^2 - at$

Explanation

- › Draw another parabola with focus $p_2 = (c, b)$ and directrix $L_2 = \{x =$ $-c$.
- \rightarrow (g, h) lies on C and also on the parabola.
- › Equation of parabola is $cx =$ 1 4 $(y - g)^2$

Explanation

- › Equation of parabola is $cx =$ 1 4 $(y - g)^2$
- \rightarrow Slope of C at (g, h) is

$$
\frac{2c}{(h-b)}
$$

$$
\Rightarrow \text{So equation for } C \text{ is}
$$
\n
$$
y = \frac{2c}{(h-b)}x + \left(h - \frac{2c}{h-b}g\right)
$$

Explanation

 \rightarrow Distance $((g, h), (-c, h)) =$ Distance $((g, h), (c, b)),$

$$
\sqrt{(g-c)^2 + (h-b)^2} = \sqrt{(g+c)^2}
$$

or
$$
(h-b)^2=4gc.
$$

 \rightarrow So equation for C is $y =$ $2c$ $(h - b)$ $x + (h 2c$ $h - b$ \overline{g} simplifies to

$$
y = tx + u
$$
, $t = \frac{2c}{(h-b)}$, $u = b + \frac{c}{t}$.

Explanation

› First picture:

$$
y = tx + u
$$
, $t = \frac{1}{2}(v - a)$ $u = -t^2 - at$

- › Second picture: $y = tx + u, \quad t =$ $2c$ $(h-b)$ $u = b +$ \mathcal{C}_{0} \bar{t}
- \rightarrow Intercept u is the same, so

$$
-t^2 - at = b + \frac{c}{t} \text{ or } t^3 + at^2 + bt + c = 0
$$

Mathematics for (flat) Origami
Flat origami

> An origami is **flat foldable** (可 以被摺平) if it can be compressed without making new creases.

› Useful if you want to put it into your pocket.

Source: https://www.wikihow.com/Fold-Paper-Flowers https://www.ce.gatech.edu/news/researchers-develop-new-zipperedorigami-tubes-fold-flat-deploy-easily-and-still-hold http://jasonku.mit.edu/butterfly1.html

FLAT FOLDABILITY 73

Is it flat?

› Can we judge whether an origami is flat just by looking at the crease pattern (摺痕)?

› We use some mathematical ideas and tools to investigate.

Mountains and Valleys

› In origami, there are only two ways to make a fold: Mountain (山) or Valley (谷)

Single vertex origami

- › A vertex (頂點) is any point inside the paper where two or more crease lines (摺痕線) meet (交叉).
- › A single vertex (單頂點) origami only has one vertex.
- › We study when is a single vertex origami flat foldable

Maekawa's Theorem

- › MAEKAWA Jun (前川 淳)– Japanese software engineer, mathematician, origami artist.
- › If an origami is flat vertex fold, then $\widetilde{M} - V = 2$ or $M - V = -2$
- › Meaning ? (a) The difference between mountain folds and valley folds is always 2.

(b)Total number of creases (摺痕總數) must be **even** (雙數)

$$
M + V = 2V + 2 (or 2V - 2)
$$

Source: https://en.wikipedia.org/wiki/Jun_Maekawa https://origamicaravan.org/archives/2011-artists/jun-maekawa/

The proof

› If origami is flat foldable at one vertex, then cutting off the vertex after folding gives a polygon (多邊形).

 \rightarrow If the total number of creases is n , then

$$
M+V = n.
$$

Revision – angle sum (角度總和) in a polygon

- › Sum of all angles in any triangle $(E^2 \oplus E^2)$ is always 180°.
- › There are 2 triangles in a quadrilateral (四邊形), so the sum of all angles is always 360°.
- \rightarrow For a polygon of n sides, we can fit $n - 2$ triangles, so the sum of all angles is $(n - 2) * 180^\circ$.

Source: https://www.mathsisfun.com/geometry/interior-anglespolygons.html

The proof

- › Label each valley fold V with 360° angle and each mountain fold M with 0° angle.
- › The angle sum is $360^{\circ} * V + 0^{\circ} * M = 360^{\circ} * V$
- \rightarrow But angle sum of *n*-sided polygon is $n-2)*180^{\circ}$

› So

 $360^{\circ} * V = (M + V - 2) * 180^{\circ}$ or $2V = M + V - 2$ or $M - V = 2$

› Reverse labelling (V with 0° and M with 360°) gives $M - \bar{V} = -2$.

Question??

› If there is an odd number (單數) of creases (摺痕線) to a vertex origami (單頂點摺紙), can it be folded flat?

Question??

› If there is an odd number (單數) of creases (摺痕線) to a vertex origami (單頂點摺紙), can it be folded flat?

Kawasaki's Theorem

- › KAWASAKI Toshikazu (**川崎 敏和**) – Japanese paperfolder, famous for the Kawasaki Rose.
- > If the alternating sum of consecutive angles (**交替連續總** $\underline{\text{Theta}}(\mathbf{g}) = \underline{\mathbf{0}}^{\circ}$, e.g.

 $a - b + c - d = 0^{\circ}$

then the origami is flat foldable.

Source: https://en.wikipedia.org/wiki/Toshikazu_Kawasaki https://origamicaravan.org/archives/2011-artists/toshikazukawasaki/

FLAT FOLDABILITY 83

 \mathcal{T}

Application of Kawasaki's Theorem › In the example,

 $a = 90^{\circ}, b = 45^{\circ}, c = 90^{\circ}, d = 135^{\circ}$

› The alternating sum is

 $a - b + c - d = 90^{\circ} - 45^{\circ} + 90^{\circ} - 135^{\circ} = 0^{\circ}$

 \mathcal{T}

Application of Kawasaki's Theorem › In the example,

 $a = 90^{\circ}, b = 45^{\circ}, c = 90^{\circ}, d = 135^{\circ}$

› The alternating sum is

 $a - b + c - d = 90^{\circ} - 45^{\circ} + 90^{\circ} - 135^{\circ} = 0^{\circ}$

› So Kawasaki's theorem tells us it is flat foldable.

What about with more vertices (多個頂點)?

› Both Maekawa's theorem and Kawasaki's theorem are for single vertex folds (單頂點摺紙).

› But these are not very interesting origami.

 π

› Is there a version for crease patterns with more than one vertex?

Positive example (正例子)

› Investigate if the crease pattern gives a flat foldable origami.

Positive example (正例子)

› It is flat foldable as it is the crease pattern for a crane.

Negative example (負例子)

- \rightarrow Angles $a = b = c = 60^{\circ}$.
- › Each vertex has alternating sum $90^\circ - 120^\circ + 90^\circ - 60^\circ = 0^\circ$
- › Kawasaki's theorem says the origami can be flat foldable at any one vertex.
- › What about the instruction for each crease?

Negative example (負例子)

 \rightarrow If l_1 , l_2 are both the same (e.g. mountain), then the origami cannot be fold flat – otherwise paper intersect itself (自我相交).

- \rightarrow So l_1 must be folded differently to l_2 .
- \rightarrow E.g. l_1 is a mountain, l_2 is a valley. valley. MY ASSIGNMENT 91

Negative example (負例子)

- $\rightarrow l_1$ is a mountain, l_2 is a valley.
- \rightarrow Same idea: l_2 and l_3 cannot be the same, so l_3 is a mountain.
- › Now, we have a contradiction (矛 盾) with l_1 and l_3 .

› So the origami cannot be folded Flat! MV ASSIGNMENT MV ASSIGNMENT

What's wrong?

› Kawasaki's theorem is for crease pattern with a single vertex.

› For multiple vertices, Kawasaki's condition is not sufficient. We saw one negative example !'

› Therefore, the answer to flat foldability (for multiple vertices) is still *unknown*. This is an open problem in mathematical origami.

Thank you for your attention!