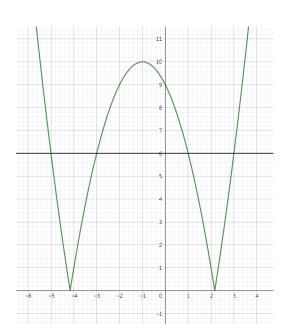
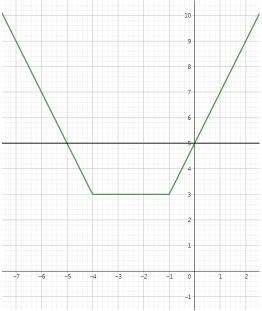
Answers for exercise

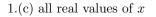


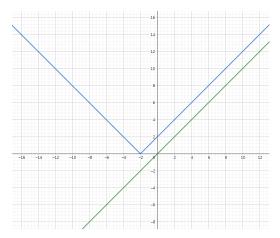
1.(a) x = -5, x = -3, x = 1 or x = 3

1.(b) x = -5 or x = 0



Graph of $y = (x+1)^2 - 10$ and y = 6

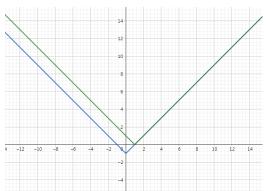




Graph of y = |x + 2| and y = x

Graph of y = |x+1| + |x+4| and y = 5

1.(d) all x satisfying $x \ge 1$



Graph of y = |x - 1| and y = |x| - 1

2.(a) true	2.(b) false	2.(c) false
2.(d) true	2.(e) true	2.(f) true
2.(g) false	2.(h) false	2.(i) true

4.(b) x = -6 or x = 24.(a) no real solution 4.(c) x = -3 or x = 14.(d) x = 2 or x = 104.(e) x = -1 or $x = \frac{5}{2}$ 4.(f) x = -2 or x = 24.(g) x = -1 or x = 34.(h) x = 14.(j) x = -6 or x = -3 or x = -14.(i) x = 24.(1) x = -3 or x = 14.(k) x = 0 or x = 54.(n) x = -3 or $x = -2\sqrt{\frac{2}{3}} - 3$ 4.(m) $x = -2 - \sqrt{3}$ or $x = 2 - \sqrt{3}$ or $x = 2\sqrt{\frac{2}{3}} - 3$ or $x = -\sqrt{3} - 2$ or $x = \sqrt{3} + 2$ 4.(p) $x = -\frac{8}{3}$ or x = 64.(o) x = 0 or x = 14.(r) x = 0 or $x = \log 3$ 4.(q) x = -6 or x = 44.(t) x = -1 or $x = \frac{2}{3}$ 4.(s) $x = -\log 2$ or $x = \log 2$ 4.(u) $x = -e^2$ or $x = e^2$ 4.(v) $x = \frac{1}{81}$ or x = 94.(x) $x = -\frac{3\pi}{4}$ or $x = -\frac{\pi}{4}$ 4.(w) $x = -\frac{\pi}{4}$ or $x = \frac{\pi}{4}$ or $x = \frac{\pi}{4}$ or $x = \frac{3\pi}{4}$

5.(b) We have shown $(|a|)^2 = a^2$. Also, by 5.(a), $|a| \ge 0$. So $\sqrt{(|a|)^2} = |a|$. Hence $|a| = \sqrt{(|a|)^2} = \sqrt{a^2}$.

5.(e) If part: Suppose |a| = 0. Assume $a \ge 0$. Then we have a = 0. Assume a < 0. Then we have -a = 0 and so a = 0, which contradicts the assumption. So we must have a = 0.

Only if part: It is obviously that if a = 0 then |a| = 0. Hence |a| = 0 if and only if a = 0. By replacing a with a - b, we obtain |a - b| = 0 if and only if a = b.

6.(c) Note that if $a, b \ge 0$ or a, b < 0, the inequality is true because LHS is equal to RHS. Now suppose a, b are not of the same sign. Without loss of generality, assume $a \ge 0$ and b < 0. (Case 1) If $a + b \ge 0$, then |a + b| = a + b. By 6.(b), $a \le |a|$ and $b \le |b|$. So $|a + b| = a + b \le |a| + |b|$. (Case 2) If a + b < 0, then |a + b| = -a - b. By 6.(b), $-a \le |-a| = |a|$ and $-b \le |-b| = |b|$. So $|a + b| = -a - b \le |a| + |b|$. Hence $|a + b| \le |a| + |b|$ in all cases.

6.(d) From 6.(c), we have $|a| = |(a - b) + b| \le |a - b| + |b|$. Then, $|a| - |b| \le |a - b|$. From 6.(c), we also have $|b| = |(b - a) + a| \le |b - a| + |a|$. Then, $|a| - |b| \ge -|b - a| = -|a - b|$. Combining the two inequalities, we get $-|a - b| \le |a| - |b| \le |a - b|$. By 6.(a), since $|a - b| \ge 0$, we have $||a| - |b|| \le |a - b|$ as desired.

7. We only show that $\max(\{a, b\}) = \frac{a+b+|a-b|}{2}$: (Case 1) Suppose $a \ge b$. Then |a-b| = a-b. So $\frac{a+b+|a-b|}{2} = \frac{a+b+a-b}{2} = a = \max(\{a, b\})$. (Case 2) Suppose a < b. Then |a-b| = b-a. So $\frac{a+b+|a-b|}{2} = \frac{a+b+b-a}{2} = b = \max(\{a, b\})$. Hence $\max(\{a, b\}) = \frac{a+b+|a-b|}{2}$.

8.(b) Note that $b^2 \ge 0$. So $a^2 \le a^2 + b^2$. Also, by 5.(a), $|a| \ge 0$ and $\sqrt{a^2 + b^2} \ge 0$. Then, $|a| = \sqrt{a^2} \le \sqrt{a^2 + b^2}$. Similarly, $|b| \le \sqrt{a^2 + b^2}$. Hence by 6.(c), $|a + b| \le |a| + |b| \le 2\sqrt{a^2 + b^2}$. Note that it becomes equality if and only if a, b = 0.

8.(c) Since a, b are solutions to |x + 1| < c, we have |a + 1| < c and |b + 1| < c. So by 6.(e), $|a - b| \le |a + 1| + |-1 - b| = |a + 1| + |b + 1| < 2c$.

8.(d) Since |x-2| < a, by 6.(a) we have -a < x-2 < a. So 4-a < x+2 < 4+a. Then, by 5.(e), $|x^2-4| = |x-2||x+2| < a(4+a) < a^2 + 4a + 4 = (a+2)^2$.