MATH4240: Stochastic Processes Tutorial 5

YANG, Fan

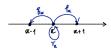
The Chinese University of Hong Kong fyang@math.cuhk.edu.hk

20 Feb, 2023

Birth and death chain

Examples 1: Birth & Death Chain.

• Setting:



 $q_0 = 0$; $p_d = 0$, if d is finite.

Note: the transition probs are functions of states!

124/

Let X_n , $n\geq 0$ be an irreducible birth and death chain on nonnegative integers with birth probability $p_x>0$ for $x\geq 0$ and death probability $q_y>0$ for $y\geq 1$. Set $\gamma_0=1$ and $\gamma_y=\frac{q_1\cdots q_y}{p_1\cdots p_y}$ for $y\geq 1$. Recall that an irreducible birth and death chain on $\{0,1,2,\dots\}$ is recurrent if and only if

$$\sum_{x=1}^{\infty} \gamma_x = \infty$$

Consider an irreducible birth and death chain on $\{0,1,2,\dots\}$ defined by

$$p_x = \frac{x+2}{2(x+1)}$$

and

$$q_x = \frac{x}{2(x+1)}.$$

Q:(a) Prove this chain is transient.

- (b) Find $P_x(T_a < T_b)$ for a < x < b.
- (c) Find ρ_{x0} for x > 0.

(a) Since
$$\frac{q_x}{p_x} = \frac{x}{x+2}$$
, and it follows that

$$\gamma_x = \frac{q_1 \dots q_x}{p_1 \dots p_x} = \frac{1 \cdot 2 \cdot \dots \cdot x}{3 \cdot 4 \cdot \dots \cdot (x+2)} = \frac{2}{(x+1)(x+2)} = 2(\frac{1}{x+1} - \frac{1}{x+2}).$$

Thus,

$$\sum_{x=1}^{\infty} \gamma_x = 2 \sum_{x=1}^{\infty} \left(\frac{1}{x+1} - \frac{1}{x+2} \right)$$

$$= 2 \left(\frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots \right)$$

$$= 2 \cdot \frac{1}{2} = 1.$$

We conclude that the chain is transient.

(b) Now,
$$\gamma_x = 2(\frac{1}{x+1} - \frac{1}{x+2})$$
. then

$$P_x(T_a < T_b) = \frac{\sum_{y=x}^{b-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y} = \frac{2(\frac{1}{x+1} - \frac{1}{b+1})}{2(\frac{1}{a+1} - \frac{1}{b+1})} = \frac{(a+1)(b-x)}{(x+1)(b-a)}.$$

(c) Recall that

$$P_x(T_a < T_b) = \frac{\sum_{y=x}^{b-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y}, \quad a < x < b.$$

Thus,

$$P_{x}(T_{0} < T_{n}) = \frac{\sum_{y=x}^{n-1} \gamma_{y}}{\sum_{y=0}^{n-1} \gamma_{y}}$$

for 0 < x < n.

Note that for x > 0, $1 \le T_{x+1} < T_{x+2} < \cdots$. Hence $\{T_0 < T_n\}_{n=1}^{\infty}$ forms a nondecreasing sequence of events. By continuity of the probability, we have for $x \ge 1$,

$$\rho_{x0} = P_x(T_0 < \infty)$$

$$= P_x(\bigcup_{n=1}^{\infty} \{T_0 < T_n\})$$

$$= \lim_{n \to \infty} P_x(T_0 < T_n)$$

$$= \frac{\sum_{y=x}^{n-1} \gamma_y}{\sum_{y=0}^{n-1} \gamma_y}.$$

Thus,

$$\rho_{x0} = \frac{\sum_{y=x}^{\infty} \gamma_y}{\sum_{v=0}^{\infty} \gamma_y} = \frac{\frac{2}{x+1}}{2} = \frac{1}{x+1}.$$

Remark. $q_x < p_x$ for all x does not imply the chain is transient. For example, one may take $\gamma_x = 1/2x$ by choosing $q_1/p_1 = 1/2$ and $q_n/p_n = (n-1)/n$ for $x \ge 2$. Then,

$$\sum_{x=0}^{\infty} \gamma_x = \infty$$

and thus the chain is recurrent.

On the contrary, given an irreducible birth and death chain on nonnegative integers, if $p_x \le q_x$ for $x \ge 1$, then

$$\sum_{y=0}^{\infty} \gamma_y = 1 + \sum_{y=1}^{\infty} \frac{q_1 \cdots q_y}{p_1 \cdots p_y} \ge 1 + \sum_{y=1}^{\infty} 1^y = \infty.$$

This implies that $\rho_{10} = 1$. By one-step argument, we have

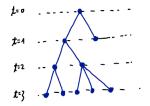
$$\rho_{00} = P(0,0) + P(0,1)\rho_{10} = r_0 + p_0.$$

Since $p_0 + r_0 = 1$ and $p_0 > 0$, we have $\rho_{00} = 1$, that is, state 0 is recurrent. As the chain is irreducible, it is recurrent.

Branching chain

Example 2. Branching chain.

Each particle generates ξ particles independently in the next generation.



 $X_n \stackrel{\text{def}}{=}$ the total no of particles in the n^{th} generation

$$P(0,0)=1.$$

$$P(x,y) = P(\xi_1 + \xi_2 + \cdots + \xi_x = y), \quad x \geqslant 1.$$

Consider a branching chain such that $P(\xi = 1) < 1$. If $P(\xi = 0) > 0$, then for any x > 0,

$$P(x,0) = P(\xi = 0)^x > 0.$$

Since 0 is absorbing, any positive x is transient. If $P(\xi = 0) = 0$, then X_n is non-decreasing, that is, $\rho_{xy} = 0$ for x > y. Moreover, for x > 0.

$$\rho_{xx} = P(x, x) = P(\xi = 1)^x < 1.$$

Hence any positive x is transient.

Consider a branching chain with $P(\xi=0)=P(\xi=3)=1/2$. The mean number of offspring of one given particle is $\mu=3/2>1$. Hence the extinction probability ρ is the root of the equation

$$\frac{1}{2} + \frac{1}{2}t^3 = t$$

lying in [0,1). We can rewrite this equation as

$$(t-1)(t^2+t-1)=0.$$

This equation has three roots, namely, 1, $\frac{-1+\sqrt{5}}{2}$, and $\frac{-1-\sqrt{5}}{2}$. Consequently, $\rho=\frac{-1+\sqrt{5}}{2}$.

Consider a branching chain. We would like to show $E_x[X_n] = x\mu^n$. where $\mu = E[\xi]$

YANG, Fan (CUHK) MATH 4240 Tutorial 5 20 Feb, 2023

14 / 18

The conclusion holds trivially for x = 0. Now, for $x \ge 1$,

$$\sum_{y} y P(x,y) = E_{x}(X_{1}) = E(\xi_{1} + \xi_{2} + \dots + \xi_{x}) = x E(\xi_{1}) = \mu x.$$

Now,

$$E_{x}(X_{n}) = \sum_{y \in \mathcal{S}} y P_{x}(X_{n} = y)$$

$$= \sum_{y \in \mathcal{S}} y \left(\sum_{x \in \mathcal{S}} P(x, y) P(X_{n-1} = x) \right)$$

$$= \sum_{x \in \mathcal{S}} P(X_{n-1} = x) \left(\sum_{y \in \mathcal{S}} y P(x, y) \right)$$

$$= \mu \sum_{x \in \mathcal{S}} x P(X_{n-1} = x) = \dots = x \mu^{n}.$$

Examples on queuing chain

Example 3. Queuing chain.

Setting:

 In a queue, let ξ_n denote the no of arrivals in the n-th unit time. {ξ_n}_{n=1}[∞] are i.i.d.r.v. with pdf:

$$f(k) = p_k, \quad k = 0, 1, 2, \cdots$$

 The service of a customer is exactly one in a unit time.

Let X_n denote the no of customers in the queue.

$$P(x,y) = f(\underbrace{y - (x-1)}_{\text{no of arrivals}}), \quad x \geqslant 1,$$

$$P(0,y) = f(y).$$

Note:
$$P(1, y) = P(0, y)$$
.

The queuing chain is irreducible if and only if f(0) > 0 and f(0) + f(1) < 1.

Examples on queuing chain

 \Rightarrow

If f(0) = 0, then P(x, x - 1) = f(0) = 0 for $x \ge 1$. That implies $\rho_{xy} = 0$ for $x > y \ge 0$. Hence the chain is not irreducible.

If f(0) + f(1) = 1, then P(x, y) = f(y - x + 1) = 0 for $1 \le x < y$. That implies $\rho_{xy} = 0$ for $1 \le x < y$. Hence the chain is not irreducible.

This proves the "only if" part.

Examples on queuing chain

Now, suppose f(0) > 0 and f(0) + f(1) < 1. For $x > y \ge 0$,

$$\rho_{xy} \geq P(x,x-1)P(x-1,x-2)\cdots P(y+1,y) = (f(0))^{x-y} > 0.$$

Since f(0) + f(1) < 1, there exists $x_0 \ge 2$ such that $f(x_0) > 0$. Then for $n \ge 0$,

$$\rho_{0,x_0+n(x_0-1)} \ge P(0,x_0)P(x_0,x_0+(x_0-1))
P(x_0+(x_0-1),x_0+2(x_0-1))\cdots
P(x_0+(n-1)(x_0-1),x_0+n(x_0-1))
= f(x_0)^{n+1} > 0.$$

Now for any states x, y, there exists n such that $x_0 + n(x_0 - 1) > y$. Since x leads to 0, 0 leads to $x_0 + n(x_0 - 1)$, $x_0 + n(x_0 - 1)$ leads to y, x also leads to y. Hence the chain is irreducible. This proves the "if" part.