MATH4240: Stochastic Processes Tutorial 4

YANG, Fan

The Chinese University of Hong Kong

fyang@math.cuhk.edu.hk

13 February, 2023

Recurrent and Transient

Let X_n , $n \ge 0$, be an irreducible Markov chain with state space S. For $x, y \in S$, let

$$G(x,y) = E_x[N(y)] = E_x[\sum_{n=1}^{\infty} 1_y(X_n)] = \sum_{n=1}^{\infty} E_x[1_y(X_n)] = \sum_{n=1}^{\infty} P^n(x,y)$$

denote the expected number of visits to y for the chain starting at x. Then

$$G(x, y) = \begin{cases} 0, & \text{if y is recurrent and } \rho_{xy} = 0\\ \infty, & \text{if y is recurrent and } \rho_{xy} > 0,\\ \frac{\rho_{xy}}{1 - \rho_{yy}}, & \text{if y is transient.} \end{cases}$$

Hence the state y is recurrent if and only if the series $\sum_{n=1}^{\infty} P^n(y, y)$ is divergent.

Consider $\mathbb{Z}^d = \{(x_1, x_2, \dots, x_d) | x_i \in \mathbb{Z}, i = 1, \dots, d\}, d \ge 1$, the set of all integer points in *d* dimensions. A walker wanders randomly on \mathbb{Z}^d starting from the origin *o*. At each point, he chooses with equal probability the one among the 2*d* nearest points where his next step will take him. The question is: does he always come back to the origin *o*?

The random walk above is called the *d-dimensional Pólya's walk*. (George Pólya, 1887-1985, a very famous Hungarian mathematician.)

Regarding the walk as an irreducible Markov chain with state space $S = \mathbb{Z}^d$, the question is to check if such chains are recurrent or transient for each $d \ge 1$. Note that the walk always has period 2.

Pólya's walk

For d=1, if the walker is back to origin o at the (2n)th step, he has to make n to the left and n to the right. Hence

$$P^{2n}(o,o) = rac{1}{2^{2n}} {2n \choose n} = rac{(2n)!}{2^{2n}(n!)^2} \sim rac{C_1}{\sqrt{n}},$$

where C_1 is a positive constant (independent of n). The last step follows from *Stirling's formula*:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n,$$

where the notion \sim means asymptotical equivalence, i.e.,

$$\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{n!}=1.$$

Note that $\sum_{n=1}^{\infty} P^n(x, y)$ is divergent, so the chain is recurrent.

Pólya's walk

For d=2, if the walker is back to origin *o* at the (2n)th step, *n* steps have to go north or east. There are $\binom{2n}{n}$ possibilities to assign the *n* steps of these two types; the other *n* go south or west. For each of these choices, choose *i* from $\{0, 1, \dots, n\}$, then assign *i* steps to go north and the other n - i to go east; also assign *i* steps to go south and the other n - i to go west. Hence

$$P^{2n}(o, o) = \frac{1}{4^{2n}} {\binom{2n}{n}} \sum_{i=0}^{n} {\binom{n}{i}}^2$$

= $\frac{1}{4^{2n}} {\binom{2n}{n}} \sum_{i=0}^{n} {\binom{n}{i}} {\binom{n}{n-i}}$
= $\frac{1}{4^{2n}} {\binom{2n}{n}}^2 = \left(\frac{1}{2^{2n}} {\binom{2n}{n}}\right)^2 \sim \frac{C_2}{n},$

where C_2 is a positive constant (independent of *n*). Note that $\sum_{n=1}^{\infty} P^n(x, y)$ is divergent, so the chain is also recurrent. YANG Fan (CUHK) MATH 4240 Tutorial 4 13 February 2023

Pólya's walk

For d=3, if the walker is back to origin o at the (2n)th step, n steps have to go north, east or up. Similarly we can write down the probability:

$$P^{2n}(o,o) = \frac{1}{6^{2n}} \binom{2n}{n} \sum_{i+j \le n} \left(\frac{n!}{i!j!(n-i-j)!} \right)^2$$

Note that the term $i!j!(n-i-j)! \ge ([n/3]!)^3$. Hence

$$P^{2n}(o,o) \leq \frac{1}{6^{2n}} {2n \choose n} \frac{n!}{([n/3]!)^3} \sum_{i+j \leq n} \frac{n!}{i!j!(n-i-j)!}$$
$$= \frac{1}{6^{2n}} {2n \choose n} \frac{n!}{([n/3]!)^3} 3^n \sim C_3 n^{-3/2},$$

where C_3 is a positive constant (independent of *n*). Note that $\sum_{n=1}^{\infty} P^n(x, y)$ is convergent, so the chain is transient (and so does every point).

Remark 1. In contrary to finite state space, we do not have any recurrent state when d = 3. ("A Drunk Man Will Find His Way Home but a Drunk Bird May Get Lost Forever") **Remark 2.** Indeed, we can show that in the case of *d*-dimensional Pólya's walk, $d \ge 1$,

$$\mathsf{P}^{2n}(o,o)\sim C_d n^{-d/2}.$$

Hence the chain is transient for all $d \ge 3$.

Recall that a subset C of state space S is called an *irreducible closed set* if any pair x and y in C are communicated and P(u, v) = 0 for any $u \in C$ and $v \in S \setminus C$. For any transient x, the *absorption probability* for C is defined as

$$\rho_{\mathcal{C}}(x) = P_x(T_{\mathcal{C}} < \infty).$$

Reducible Markov chains

In general, a finite state space ${\mathcal S}$ has the decomposition

$$S = S_R \cup S_T = C_1 \cup C_2 \cup \cdots \cup C_m \cup S_T,$$

where S_R is the collection of recurrent states in S, S_T is the collection of transient states in S, and each C_i is an irreducible closed set. Suppose that the transition matrix P has the following canonical form (if not, one can permute states in S properly):

$$P = \begin{pmatrix} C_1 & C_2 & \cdots & C_m & S_T \\ P_1 & 0 & \cdots & 0 & 0 \\ 0 & P_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & P_m & 0 \\ \times & \times & \cdots & \times & Q \end{pmatrix}$$

Note that $Q^k(x,y) = P^k(x,y)$ for $x,y \in \mathcal{S}_T$. Now we show that $\lim_{k \to \infty} Q^k = \mathbf{0}$

is the zero matrix and all eigenvalues of Q have moduli strickly less than 1.

Indeed, for any $x, y \in S_T$, as y is transient, $\sum_{k=1}^{\infty} P^k(x, y) = G(x, y) = E_x(N(y)) = \frac{\rho_{xy}}{1 - \rho_{yy}} < \infty$, hence we have $\lim_{k \to \infty} Q^k(x, y) = \lim_{k \to \infty} P^k(x, y) = 0.$ For an eigenvalue λ of Q and a corresponding nonzero left eigenvector α , we have $\alpha Q^k = \lambda^k \alpha$ tends to zero vector as $k \to \infty$ since $\lim_{k \to \infty} Q^k = \mathbf{0}.$ This implies $|\lambda| < 1$. Moreover, I - Q is invertible since 1 is not the eigenvalue of Q.

Reducible Markov chains

In the lecture, we can use the one-step formula in matrix form to calculate the absorption probability $\rho_{C_i}(x)$ for irreducible closed set C_i and $x \in S_T$. As an example, consider the Markov chain with the following transition matrix

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 0 & 2/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 0 & 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0 \\ 1/3 & 1/4 & 1/6 & 0 & 1/4 & 0 & 0 \end{pmatrix}.$$

It is reducible with $C_1 = \{1, 3, 6\}$, $C_2 = \{2, 5\}$, $S_T = \{4, 7\}$. To simplify the notions, we can regard each C_i as an absorbing state and define the transition probability $P(x, C_i) = \sum_{y \in C_i} P(x, y)$ for $x \in S_T$. (A state a is absorbing if P(a, a) = 1 or , equivalently, if P(a, y) = 0 for any $y \neq a$)

Then the transition matrix can be written as

$$\widetilde{P} = \begin{pmatrix} \mathcal{C}_1 & \mathcal{C}_2 & 4 & 7\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1/2 & 1/2\\ 1/2 & 1/2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} l_2 & \mathbf{0}\\ S & Q \end{pmatrix}.$$

Let $A = \begin{pmatrix} \rho_{C_1}(4) & \rho_{C_2}(4) \\ \rho_{C_1}(7) & \rho_{C_2}(7) \end{pmatrix}$. Then one-step formula can be written as A = QA + S. Since I - Q is invertible,

$$A = (I - Q)^{-1}S = \begin{pmatrix} 1/2 & -1/2 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 0 \\ 1/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}.$$
(1)

Hence $\rho_{C_1}(4) = \rho_{C_2}(4) = \rho_{C_1}(7) = \rho_{C_2}(7) = 1/2$. To find the limit $\lim_{k\to\infty} P^k$, we will discuss the general reducible case in the next tutorial. At least in this tutorial class we can deal with the following special case of reducible Markov chains. If a Markov chain with *n* states has exactly *m* absorbing states, 0 < m < nand all other states are transient, then the transition matrix *P* is in the form

$$\mathsf{P} = \left(\begin{array}{cc} I_m & \mathbf{0} \\ S & Q \end{array}\right),$$

where $\mathbf{0}$ is the $m \times (n-m)$ zero matrix, S is a $(n-m) \times m$ matrix, and Q is a $(n-m) \times (n-m)$ matrix satisfying $Q^k \to \mathbf{0}_{n-m}$ as k goes to ∞ . By directed calculation,

$$\lim_{k\to\infty}P^k=\left(\begin{array}{cc}I_m&\mathbf{0}\\A&\mathbf{0}\end{array}\right),$$

where $A = \lim_{k \to \infty} (S + QS + \dots + Q^{k-1}S) = (I - Q)^{-1}S$.

Markov chains with absorbing states

Again we use

$$\widetilde{P} = \begin{pmatrix} \mathcal{C}_1 & \mathcal{C}_2 & 4 & 7\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1/2 & 1/2\\ 1/2 & 1/2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} I_2 & \mathbf{0}\\ S & Q \end{pmatrix}$$

as an example. Since A has the same form as (1), we have

$$\lim_{k \to \infty} \widetilde{P}^k = \begin{pmatrix} \mathcal{C}_1 & \mathcal{C}_2 & 4 & 7\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 1/2 & 1/2 & 0 & 0\\ 1/2 & 1/2 & 0 & 0 \end{pmatrix}.$$