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4.1 Markov Chains 

Informally, Markov chains (MCs) serve as theoretical models for describing 
a "'system'' which can be in various "states", the fixed set of possible states 
being countable (i.e. finite, or denumerably infinite). The system" jumps'' at 
unit time intervals from one state to another, and the probabilistic law 
according to which jumps occur is 

"If the system is in the ith state at time k - 1, the next jump will take it to 
the jth state with probability p;1(k)." 

The set of transition probabilities P;ik) is prescribed for all i, j, k and deter­
mines the probabilistic behavior of the system, once it is known how it starts 
off"' at time O ''. 

A more formal description is as follows. We are given a countable set 
.L/' = [s1, s2 , ···} or, sometimes, more conveniently {s0 , s1 , s2 , ... } which is 
known as the state space, and a sequence of random variables :x kl- k = 0, L 
2, .. . taking values in .Y, and having the following probability propt?rty: if x0 , 

x 1, ... , -'k+ 1 are elements of ._'-/, then 

P(Xk+l = -'k-t-11xk = -'k• xk-1 = -'k-1• .. ., Xo = Xo) 
= P(Xk +l = -'k+1IXk = xd 

if P(Xk
= xk,···• Xo = x0)>0 

(if P(B) = 0, P(A I B) is undefined). 
This property which expresses, roughly, that future probabilistic evolu­

tion of the process is determined once the immediate past is known, is the 
Markov property, and the stochastic process :x k: possessing it is called a 
Markoi- chain. 

Moreover, we call the probability 

P(Xk+1 = s1 /Xk = s;) 
the transition probability from state s; to state s

1
, and write it succinctly as 

Pii(k + 1 ), S;, Si E Y, k = 0, L 2, ... 
Now consider 

P[,Y O = S;
0

, ,Y 1 = S;
1

, . . •  , .Y k = s;.]. 
Either this is positire, in which case, by repeated use of the Markov property 
and conditional probabilities it is in fact 

P[Xk = S;,IXk-l = S;,_J ··· P[X1 = S;,IXo = S;0]P[Xo = S;
0
] 

= Pik-J. ;,(k)P;,_ 2. ;,_, (k - 1) ... Pio. ;Jl )Il;o 

where 11;
0 

= P[X O = s;0] 

or it is zero, in which case for some 0 :s; r :s; k (and we take such minimal r) 
P[X0 = S;

0
, X 1 = S;

1
, • • •  , X, = sJ = 0. 
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Considering the cases r = 0 and r > 0 separately, we see (repeating the 
above argument), that it is ~zecertlzeless true that 

since the product of the first r + 1 elements on the right is zero. Thus we see 
that the probability structure of any finite sequence of outcomes is conz- 
pletely dejned by a knowledge of the non-negutire quantities 

pll(k);  s , ,  s, E Y. IT,; s, E Y 

The set {n,) of probabilities is called the initial probabilitj1 distribution of the 
chain. We consider these quantities as specified, and denote the row vector 
of the initial distribution by lib. 

Now, for fixed k = 1, 2, . . . the matrix 

is called the transition matrix of the M C  at time k. It is clearly a square 
matrix with non-negative elements, and will be doubly infinite if 9 is 
denumerably infinite. 

Moreover, its row sums (understood in the limiting sense in the 
denumerably infinite case) are unity, for 

= P [ X ,  E .Y I X ,  , = si] 

by the addition of probabilities of disjoint sets; 

Thus the matrix P, is stochustic. 

Definition 4.1. If PI = P ,  = . . . = P,  = . . . the Markov chain is said to have 
stationary transition probabilities or is said to be homogeizeous. Otherwise it 
is non-homogeneous (or : inhomogeneous). 

In the homogeneous case we shall refer to the common transition matrix 
as the transition matrix, and denote it by P. 

Let us denote by the row vector of the probability distribution of X,; 
then it is easily seen from the expression for a single finite sequence of 
outcomes in terms of transition and initial probabilities that 

by summing (possibly in the limiting sense) over all sample paths for any 
fixed state at time k. In keeping with the notation of Chapter 3, we might 
now adopt the notation 
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and write 

[We digress for a moment to stress that, even in the case of infinite 
transition matrices, the above products are well defined by the natural exten- 
sion of the rule of matrix multiplication, and are themselves stochastic. For: 
let 

be two infinite stochastic matrices defined on the index set (1, 2, . . .). Define 
their product P, Pi! as the matrix with i, j entry given by the (non-negative) 
number : 

This sum converges, since the summands are non-negative, and 

since probabilities always take on values between 0 and 1. Further the ith 
row sum of the new matrix is 

by stochasticity of both P,  and Pi,. (The interchange of summations is 
justified by the non-negativity of the summands.)] 

It is also easily seen that for k > p 

We are now in a position to see why the theory of homogeneous chains is 
substantially simpler than that of non-homogeneous ones: for then 

so we have only to deal with powers of the common transition matrix P, and 
further, the probabilistic evolution is homogeneous in reference to any initial 
time point p .  

In the remaining section of this chapter we assume that we are dealing with 
finite (n  x n )  matrices as before, so that the index set is (1, 2, . . . , n )  as before 
(or perhaps, more conveniently, (0, 1, . . . , n - 1)). 
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Examples 

(1) Bernoulli scheme. Consider a sequence of independent trials in each of 
which a certain event has fixed probability, p, of occurring (this outcome 
being called a " success") and therefore a probability q = 1 - p of not occur- 
ring (this outcome being called a " failure "). We can in the usual way equate 
success with the number 1 and failure with the number 0;  then i /  = (0, I ) ,  
and the transition matrix at any time k is 

so that we have here a homogeneous 2-state Markov chain. Notice that here 
the rows of the transition matrix are identical, which must in fact be so for 
any " Markov chain" where the random variables {X,]  are independent. 

( 2 )  Random walk between two barriers. A particle may be at any of the points 
0, 1, 2. 3, . . . , s (s 2 1 )  on the x-axis. If it reaches point 0 it remains there with 
probability a and is reflected with probability 1 - a to state 1 ; if it reaches 
point s it remains there with probability b and is reflected to point s - 1 with 
probability 1 - b. If at any instant the particle is at position i, 1 2 i 2 s - 1, 
then at the next time instant it will be at position i + 1 with probability p, or 
at i - 1 with probability q = 1 - p. 

It is again easy to see that we have here a homogeneous Markov chain on 
the finite state set .if = (0, 1, 2, . . . , sj with transition matrix 

If a = 0, 0 is a rejecting barrier, if a = 1 it is an absorbing barrier, other- 
wise i.e. if 0 < a < 1 it is an elastic barrier; and similarly for state s. 

(3) Random wulk unrestricted to the right. The situation is as above, except 
that there is no "barrier " on the right, i.e. 9 = (0, 1,2,3,  . . .I is denumerably 
infinite, and so is the transition matrix P. 

( 4 )  Recurrent el'ent. Consider a "recurrent event ", described as follows. A 
system has a variable lifetime, whose length (measured in discrete units) has 
probability distribution { J ) ,  i = 1,2, . . . . When the system reaches age i 1, 
it either continues to age, or "dies" and starts afresh from age 0. The 
movement of the system if its age is i - 1 units, i 2 2 is thus to i, with 
(conditional) probability (1 -f, - . . . - j;)/(l - f ;  - . . . - j -  ,) or to age 0, 
with probability ,f;./(l - f ,  - . . . - A -  ,). At age i = 0, it either reaches age 1 
with probability 1 - f,, or dies with probability f,. 
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We have here a homogeneous Markov chain on the state set .Y = (0, 1,2, 
. . .} describing the movement of the age of the system. The transition matrix 
is then the denumerably infinite one: 

It is customary to specify only that I,"=, f ;  5 1, thus allowing for the 
possibility of an infinite lifetime. 

( 5 )  Polya Urn scheme. Imagine we have a white and b black balls in an urn. 
Let a + b = N. We draw a ball at random and before drawing the next ball 
we replace the one drawn, adding also s  balls of the same colour. 

Let us say that after r drawings the system is in state i, i  = 0, 1 ,2 , .  . . if i is 
the number of white balls obtained in the r drawings. Suppose we are in state 
i  ( I  r)  after drawing number r. Thus r - i  black balls have been drawn to 
date, and the number of white balls in the urn is a + is, and the number of 
black is b + (r - i)s. Then at the next drawing we have movement to state 
i + 1 with probability 

a + is 
Pi, i +  ~ ( r  + 1) = N + rs 

and to state i with probability 

Thus we have here a non-homogeneous Markov chain (if s > 0 )  with tran- 
sition matrix P ,  at "time" k = r + 1 2 1 specified by 

= otherwise, 

where Y = {O, 1, 2, . . .). 
N.B. This example is given here because it is a good illustration of a 

non-homogeneous chain; the non-homogeneity clearly occurring because of 
the addition of s balls of colour like the one drawn at each stage. Never- 
theless, the reader should be careful to note that this example does not fit 
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into the framework in which we have chosen to work in this chapter, since 
the matrix P ,  is really rectangular, viz. k x (k + 1) in this case, a situation 
which can occur with non-homogeneous chains, but which we omit from 
further theoretical consideration. Extension in both directions to make each 
P,  doubly infinite corresponding to the index set (0, 1, 2, . . .) is not neces- 
sarily a good idea, since matrix dimensions are equalized at the cost of zero 
rows (beyond the (k - 1)th) thus destroying stochasticity. 

4.2 Finite Homogeneous Markov Chains 
Within this section we are in the framework of the bulk of the matrix theory 
developed hitherto. 

It is customary in Markov chain theory to classify states and chains of 
various kinds. In this respect we shall remain totally consistent with the 
classification of Chapter 1. 

Thus a chain will be said to be irreducible, and, further, primitice or cyclic 
(imprimitice) according to whether its transition matrix P is of this sort. 
Further, states of the set 

iJ7={s1, S Z ,  . . . )  S") 

(or { s o ,  s,, . . . , s,- ,)) will be said to be periodic, essential and itzessential, to 
lead one to another, to communicate, to form essential and inessential classes 
etc. according to the properties of the corresponding indices of the index set 
(1, 2, . . . , nJ of the transition matrix. 

In fact, as has been mentioned earlier, this terminology was introduced in 
Chapter 1 in accordance with Markov chain terminology. The reader 
examining the terminology in the present framework should now see the 
logic behind it. 

Irreducible MCs 

Suppose we consider an irreducible MC {X,) with (irreducible) transition 
matrix P. Then putting as usual 1 for the vector with unity in each position, 

PI = 1 

by stochasticity of P ;  so that 1 is an eigenvalue and 1 a corresponding 
eigenvector. Now, since all row sums of P are equal and the Perron- 
Frobenius eigenvalue lies between the largest and the smallest, 1 is the 
Perron-Frobenius eigenvalue of P, and 1 may be taken as the corresponding 
right Perron-Frobenius eigenvector. Let v', normed so that v ' l  = 1, be the 
corresponding positive left eigenvector. Then we have that 

v'P = v', (4.1) 
where v is the column vector of a probability distribution. 




