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Chapter I Markov Chain

1 Definition and Examples

• Let S be a finite or countably infinite set of integers. For instance, S = {0, 1, · · · , N}
(N can be finite or infinite). Each element of S is called a state and S called the state
space.

• Let {Xn}∞n=0 be a sequence of r.v. defined on a common probability space taking common
values in S.

• {Xn}∞n=0 is called a Markov chain (MC) if

P (Xn+1 = xn+1|X0 = x0, · · · , Xn = xn) = P (Xn+1 = xn+1|Xn = xn) (1)

for all states x0, · · · , xn+1 in S. Identity (1) is called the Markov property meaning
that given the present state, the past states have no influence on the future.

• For a MC {Xn}∞n=0, P (Xn+1 = xn+1|Xn = xn) is called the transition probability,
and if it is independent of n, we denote

P (x, y) = P (Xn+1 = y|Xn = x) (n = 0, 1, · · · ) (2)

which is called the transition probability from state x to state y. In such situation, the MC
is time homogeneous. In the course, ONLY time homogeneous MCs will be discussed.

• It is clear to see

P (x, y) ≥ 0;
∑
y∈S

P (x, y) = 1. (3)

• A convenient way to represent the transition function P (x, y) is to use the matrix form,
i.e., for S = {0, 1, · · · , N},

P = [P (x, y)] =


P (0, 0) P (0, 1) · · · P (0, N)
P (1, 0) P (1, 1) · · · P (1, N)
· · · · · · · · · · · ·

P (N, 0) P (N, 1) · · · P (N,N)

 , (4)

which is called the transition matrix (Markov matrix). Note that each row vector is a
probability vector.



• Examples (See the textbook and course lectures):

(a) An i.i.d. chain.

(b) Two-state MC.

(c) Random walk.

(d) Gambler’s ruin chain.

(e) Queuing chain.

(f) Branching chain.

2 Some Computational Issues

• Let {Xn}∞n=0 be a time-homogeneous MC with the state S = {k}Nk=0 (N : finite or
infinite) and the transition matrix P .

• Question 1: How to compute p.d.f. of Xn (n ≥ 1)?

♣ For n = 0, 1, · · · , set

Πn = [P (Xn = 0), P (Xn = 1), · · · , P (Xn = N)], (5)

denoting the p.d.f. of Xn in a row-vector form. Noting

P (Xn+1 = j) =
∑
i

P (Xn+1 = j|Xn = i)P (Xn = i) =
∑
i

P (i, j)P (Xn = i), (6)

one can show

Πn+1 = ΠnP, (7)

namely, “the jth entry of Πn+1” = Πn× “the jth row of P”. Further by induction,

Πn = Π0P
n, (8)

where P n is the nth power of the transition matrix P . By the rule of matrix product, the
entry at the xth row and the yth column of P n is given by

P n(x, y) =
∑

x1,x2,··· ,xn−1

P (x, x1)P (x1, x2) · · ·P (xn−1, y), (9)

where the sum is taken over all states x1, x2, · · · , xn−1 in S.

♣ In general it is not easy to directly compute P n for n large. However, when P can be
diagonalisable in the sense that

P = QDQ−1, (10)
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where D = diag(λ0, λ1, · · · , λN), then

P n = QDnQ−1 = Qdiag(λn0 , λ
n
1 , · · · , λnN)Q−1. (11)

Using the above formula, it is also convenient to find the limiting transition matrix
lim
n→∞

P n whenever all limits on the right-hand side of (11) exist.

♣ P n(x, y) can be used for computations in the following way:

P (Xn = y) =
∑
x

Π0(x)P n(x, y), (12)

P (Xn = y|X0 = x) = P n(x, y), (13)

P (Xm+n = y|Xm = x) = P n(x, y), m = 0, 1, · · · . (14)

These motivate one to introduce a new meaning of the matrix P n(x, y) (n = 0, 1, 2, · · · ),
which is called the n-step transition function, giving the probability that the chain
starting at x visits y in n steps. Correspondingly, P n is called the n-step transition
matrix. We set P 0 = I, i.e.,

P 0(x, y) = δxy =

{
1 if x = y,

0 otherwise.
(15)

• Question 2: How to compute

P (Xn = y for some n ≥ 1|X0 = x), (16)

that is the conditional probability that the chain starting at x ever visits y in finite time?
Denote this probability by ρxy. We are interested in characterising a state x by either
ρxx = 1 or ρxx < 1:

(a) x is recurrent if ρxx = 1. (A recurrent state x means that if the chain starts at
x, then the chain must visit x again at some positive time, and thus must visit x
infinitely times.) (A state a is absorbing if P (a, a) = 1 or equivalently, if P (a, y) =
0 for any y 6= a. Obviously an absorbing state should be recurrent, because the
chain starting at an absorbing state x must stay at x forever.)

(b) x is transient if ρxx < 1. (A transient state means that if the chain starts at x,
then the chain does not return to x with a positive probability 1− ρxx > 0.) Note

1− ρxx = Px(Xn 6= x for any n ≥ 1). (17)

♣ Let A ⊂ S. The hitting time TA of A is defined by

TA = min{n ≥ 1 : Xn ∈ A}. (18)
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Thus, TA is also a r.v. denoting the first positive time the chain hits A, with

Rang TA = {1, 2, 3, · · · } ∪ {∞}, (19)

and we set TA =∞ if Xn /∈ A for all n ≥ 1. Note that for m = 1, 2, · · ·

{TA = m} = {X1 /∈ A,X2 /∈ A, · · · , Xm−1 /∈ A,Xm ∈ A}. (20)

When A = {y}, we write

Ty := T{y} = min{n ≥ 1 : Xn = y}, (21)

meaning the first positive time the chain visits y. It is clear to see

ρxy = Px(Ty <∞) =
∞∑
k=1

Px(Ty = k), (22)

as the event {Ty <∞} exactly means {Xn = y, for some n ≥ 1}, i.e., the chain starting
at x visits y at some positive time. Also,

1− ρxy = Px(Ty =∞). (23)

♣ One has

Px(Ty = 1) = P (x, y), (24)

Px(Ty = n+ 1) =
∑
z 6=y

P (x, z)Pz(Ty = n), n ≥ 1, (25)

P n(x, y) =
n∑

m=1

Px(Ty = m)P n−m(y, y). (26)

Basically, they are, respectively, due to the fact that for a chain starting at x,

{Ty = 1} = {X1 = y}, (27)

{Ty = n+ 1} = ∪z 6=y{X1 = z,X2 6= y, · · · , Xn 6= y,Xn+1 = y}, n ≥ 1, (28)

{Xn = y} = ∪nm=1{Ty = m,Xn = y}. (29)

In (26), if y is an absorbing state, then P k(y, y) = 1 for any k ≥ 0. Thus (26) reduces to

P n(x, y) =
n∑

m=1

Px(Ty = m) = Px(Ty ≤ n), (30)

for an absorbing state y.

♣ To compute the matrix [ρxy] from the transition matrix [P (x, y)], one may use the
following formula

ρxy = P (x, y) +
∑
z 6=y

P (x, z)ρzy. (31)
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This is due to that for a chain starting at x,

{Ty <∞} = {X1 = y} ∪ {X1 6= y,Xn = y for some n 6= 2} (32)

= {X1 = y} ∪ (∪y 6=z∈S{X1 = z,Xn = y for some n 6= 2}), (33)

with corresponding probabilities computed as

Px(X1 = y) = P (x, y), (34)

and for z 6= y,

Px({X1 = z,Xn = y for some n 6= 2}) (35)

= Px(X1 = z)Px(Xn = y for some n 6= 2|X1 = z) (36)

= P (x, z)ρzy. (37)

Let S = {1, 2, · · · , N}, for instance. Then, fixing j ∈ S, the formula (31) means
ρ1j
ρ2j
...
ρNj

 =


P (1, j)
P (2, j)

...
P (N, j)

+


P (1, 1) · · · P (1, j − 1) 0 P (1, j + 1) · · · P (1, N)
P (2, 1) · · · P (2, j − 1) 0 P (2, j + 1) · · · P (2, N)

... · · · ...
...

... · · · ...
P (N, 1) · · · P (N, j − 1) 0 P (N, j + 1) · · · P (N,N)



ρ1j
ρ2j
...
ρNj

 ,

(38)
where the first term on the right is just the jth column of P , and the coefficient matrix
of the second term on the right is just P with the jth column replaced by zeros.

Warning: At the present time, it is unclear that this linear system of equations is
solvable, i.e., either there is a unique solution, or there is no solution, or there are infinite
number of solutions.

• Question 3: Times of visit to a state. For a chain starting at x ∈ S, we denote
N(y) to be the NO of times that Xn (n ≥ 1) visits y. Note that N(y) is a r.v. taking
values in

RangeN(y) = {0, 1, 2, · · · } ∪ {∞}. (39)

For k = 0, the event {N(y) = 0} means that y is not visited at any positive time. For
k = 1, 2, · · · , N(y) = k means that y is visited exactly k times. For k =∞, {N(y) =∞}
means that y is visited infinitely times. Here and below, when we mention the event
{N(y) ≥ k}, it precisely means

{k ≤ N(y) ≤ ∞} = {k ≤ N(y) <∞} ∪ {N(y) =∞}. (40)

♣ We may evaluate the pdf of N(y) in the following way.

Px(N(y) ≥ 1) = Px(Ty <∞) = ρxy, (41)

Px(N(y) = 0) = 1− Px(N(y) ≥ 1) = 1− ρxy. (42)
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For k = 1, 2, · · · ,

Px(N(y) ≥ k) = ρxyρ
k−1
yy , (43)

Px(N(y) = k) = Px(N(y) ≥ k)− Px(N(y) ≥ k + 1) = ρxyρ
k−1
yy (1− ρyy). (44)

And, for k =∞,

Px(N(y) =∞) = lim
k→∞

Px(N(y) ≥ k) (45)

= lim
k→∞

ρxyρ
k−1
yy (46)

=

{
0 if ρyy < 1, i.e., y is transient;
ρxy if ρyy = 1, i.e., y is recurrent.

(47)

♣ Moreover, we would consider the expectation of N(y), denoted by Ex(N(y)) meaning
the expected NO of visit to y from x. It is clear to see that if Px(N(y) =∞) is positive
then Ex(N(y)) =∞. In general, one has

(a) y is transient iff Py(N(y) =∞) = 0. For a transient state y,

Ex(N(y)) =
ρxy

1− ρyy
<∞, x ∈ S. (48)

(b) y is recurrent iff Py(N(y) =∞) = 1, iff Ey(N(y)) =∞.

These results are quite obvious heuristically. For instance, y is recurrent if and only if the
chain starting at y must visit y at some positive time, if and only if the chain starting at
y must visit y at infinitely number of times, if and only if the expected NO of times of
visit to y from x is infinite. y is transient if and only if y is visited at only finite number
of times, if and only if it is IMPOSSIBLE that the chain visits y at infinitely number of
times. The formula (48) is a consequence of (44) as well as Py(N(y) =∞) = 0, due to

Ex(N(y)) =
∞∑
k=1

kPx(N(y) = k). (49)

There is another way to compute Ex(N(y)) which could be infinite or finite. Defining

1y(Xn) =

{
1 if Xn = y,
0 otherwise,

(50)

we see

N(y) =
∞∑
n=1

1y(Xn). (51)

Then,

Ex(N(y)) = Ex

(
∞∑
n=1

1y(Xn)

)
=
∞∑
n=1

Ex(1y(Xn)) =
∞∑
n=1

P n(x, y). (52)
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From this formula, we can claim that a finite state space must contain at least one
recurrent state. Refer to the lecture note for the rigorous proof; a heuristic argument is
based on the fact that if all states in a finite state space are transient, i.e., all states are
visited at only finite number of times, then the total NO of times of visit to all states must
be finite, which obviously contradicts the fact that time of the MC can go to infinity!

• Question 4: Decomposition of state space.

♣ x leads to y (x → y) if ρxy > 0. (x → y means that if the chain starts at x then the
chain will visit y with a positive probability ρxy.)

♣ Note the following two facts:

(a) x→ y if and only if P n(x, y) > 0 for some n ≥ 1.

(b) If x→ y and y → z then x→ z.

♣ Let x be recurrent and x→ y. Then,

(a) y → x.

(b) y is recurrent also.

(c) ρxy = ρyx = 1.

Instead of giving the rigorous proof of the above argument (see the textbook Pages
21–22), we better understand it in a heuristic way. (a): As ρxx = 1 and ρxy > 0, it is
necessarily ρyx > 0. Otherwise ρyx = 0, then x cannot be recurrent! (why?) (b): Think
about the fact that the chain starting from y can visit x (ρyx > 0), then must re-visit
x at infinitely number of times (Px(N(x) = ∞) = 1, as x is recurrent), and finally can
visit from x to y (ρxy > 0). This implies that the chain starting at y MUST re-visit y
at infinitely number of times, i.e., Py(N(y) = ∞) = 1, so y is recurrent. (Otherwise, y
is visited only at finite number of times, so x is also visited at finite number of times, a
contradiction!) (c): It suffices to argue ρyx = 1, as you can interchange x and y to get
ρxy = 1. To see ρyx = 1, otherwise ρyx < 1. It means that with the positive probability
1− ρyx the chain starting at y will never visit x. This obviously contradicts the fact that
x is recurrent because the chain staring at x can visit y (ρxy > 0) and then will never
visit back to x with the positive probability 1− ρyx.

♣ Definitions:

(i) C ⊂ S is closed if ρxy = 0, ∀x ∈ C, ∀ y /∈ C, i.e., no state in C leads to any state
out C.

(ii) A closed set C ⊂ S is irreducible if x→ y, ∀x ∈ C, ∀, y ∈ C, i.e., any state in C
leads either to itself or to any other state in C. (i.e., all states in C can communicate
with each other!)
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(iii) A MC is irreducible if its state space S is irreducible.

Directly in terms of the transition matrix P , it is easy to justify wether or not a set
C is closed. In fact, one can show that C is closed if and only if

P (x, y) = 0, ∀x ∈ C, ∀ y /∈ C. (53)

Note that if C is closed, x ∈ C, and P (x, y) > 0, then y must be in C. Note also that if
C ⊂ S is closed then the MC can also be regarded as a MC with the state space C.

♣ Defining SR to be a set of all recurrent states and ST to be a set of all transient states,
then SR ∩ ST = ∅ and

S = SR ∪ ST . (54)

Note that any state in SR cannot lead to a state in ST . So, SR is a closed set of all
recurrent states.

Assume SR 6= ∅, for instance, there is a recurrent state x0 ∈ SR. Define

Cx0 = {x ∈ SR : x0 → x}. (55)

Then, one can show that Cx0 must be closed and irreducible (see the lecture note). More-
over, one can also show that if C1 and C2 are two irreducible and closed sets then either
C1 = C2 or C1∩C2 = ∅ (see the lecture note). Therefore, one can conclude that if SR 6= ∅
then

SR = ∪ki=1Ci, (56)

for some finite or infinite k ≥ 1, where Ci, 1 ≤ i ≤ k, are disjoint irreducible closed sets
of recurrent states.

Note from the above that if C is an irreducible and closed set, then either C ⊂ SR

(i.e., all of states in C are recurrent) or C ⊂ ST (i.e., all states in C are transient). In
particular, if C is a finite irreducible closed set, then C ⊂ SR. (Why?)

In terms of the decomposition of state space

S = SR ∪ ST =
(
∪ki=1Ci

)
∪ ST , (57)

we may rewrite P as its canonical form:

P̃ =

C1 C2 · · · Ck ST

C1 ∗ 0 · · · 0 0

C2 0 ∗ . . . 0 0

...
...

. . . ∗ 0 0

Ck 0 0 0 ∗ 0

ST ∗ ∗ ∗ ∗ ∗

, (58)
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where ∗ denotes the matrix with possible nonzero entries.

♣ Absorption probability: Let C be an irreducible and closed set of recurrent states. Let
TC be the hitting time of C, i.e., the first positive time the chain enters C. Consider the
function

ρC(x) := Px(TC <∞), (59)

that is the probability that the chain from x ∈ S enters C in finite time. Note that once
the chain hits C, it remains in C forever. Thus ρC(·) is usually called the absorption
probability. It is clear to see ρC(x) = 1 if x ∈ C, and ρC(x) = 0 if x is not in C but
still recurrent. Therefore, the general situation is to compute ρC(x) for x ∈ ST , i.e. x is
transient.

In fact, one can check (Exercise) that

ρC(x) =
∑
y∈C

P (x, y) +
∑
y∈ST

P (x, y)ρC(y), x ∈ ST . (60)

This formula is quite obvious heuristically: the event the chain from x ∈ ST enters C in
finite time is equal to the disjoint union of the following events for this chain from x:

— the chain visits by one step each possible state y in C.
— the chain first visits by one step each possible state y in ST and then enters C in

finite time.

One can further rigorously show (see the textbook; the complete proof was ignored in
lecture) that if ST is finite then (60) admits a unique solution ρC(x), x ∈ ST . An
alternative proof can be given as follows. Suppose S has the state decomposition S =
C1∪C2∪ST , for instance. After reordering S, we assume to have the canonical transition
matrix

P =

C1 C2 ST[ ]C1 P1 0 0
C2 0 P2 0
ST S1 S2 Q

. (61)

To compute ρC1(x), x ∈ ST , we let ST = {x1, · · · , x`} and denote the column vectors

~v :=

 ρC1(x1)
...

ρC1(x`)
, ~v0 :=

 
∑

y∈C1
P (x1, y)
...∑

y∈C1
P (x`, y)

, (62)

so (60) can be written as the matrix form

~v = ~v0 +Q~v, (63)

which has a unique solution ~v = (I −Q)−1~v0, because Q has all eigenvalues with moduli
strictly less than one (why? see the tutorial) and thus I − Q is invertible. Note that in
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case C1 contains a single absorbing state, then ~v0 = S1 and ~v = (I −Q)−1S1, and we also
will come back to this formula in the next Chapter.

It is also obvious to see that if ST is finite, then

(i) ∑
i

ρCi
(x) = 1, x ∈ ST , (64)

where Ci correspond to those in the decomposition (57). It means that the chain
from x ∈ ST enters SR in finite time for sure! (∵ ST is finite and each transient state
is visited only finite times, hence ST is visited only finite times, and afterwards the
chain enters SR for sure!)

(ii)

ρxy = ρCi
(x), x ∈ ST , y ∈ Ci. (65)

It means that for a chain from x ∈ ST , one has the same probabilities that the chain
visits y in Ci in finite time and that the chain enters Ci in finite time. (∵ two events
are equivalent!)

3 More Examples

• Birth and Death Chain:

(a) {Xn}∞n=0, S = {0, 1, 2, · · · , d} (d is finite or ∞). When d is finite,

P =



r0 p0
q1 r1 p1
q2 r2 p2

. . . . . . . . .

qd−1 rd−1 pd−1
qd rd


. (66)

When d =∞,

P =


r0 p0
q1 r1 p1
q2 r2 p2

. . . . . . . . .

 . (67)

(b) For the chain starting at some state x ∈ (a, b) with a < b, we are interested in
computing

Px(Ta < Tb) or Px(Ta > Tb). (68)
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See the lecture for the general approach; you have to be familiar with the full
procedure of such computations. Note that the above expressions seem not well-
defined at x = a and b. However, in such trivial cases, it is still reasonable to assign
values in the way that

Pa(Ta < Tb) = 1, Pb(Ta < Tb) = 0. (69)

Here, Ta < Tb is understood to be an event A that the chain {Xn}∞n=0 is at a strictly
earlier than b. Then, if X0 = a then A occurs for sure, i.e. Pa(A) = 1; if X0 = b
then A does not occur for sure, i.e. Pb(A) = 0.

(c) Note that the chain is irreducible if and only if px > 0, ∀x ≥ 0 and qx > 0, ∀x ≥ 1.
In such situation, we see that if d is finite then the chain is recurrent, i.e., all states
in S are recurrent. However, if d = ∞, it is NOT obvious to see whether such
irreducible chain is recurrent or transient!!! In fact, we can derive a criterion to
justify it; see the lecture.

• Branching Chain:

(a) Each particle generates ξ (r.v.) particles independently in the next generation, and
Xn denotes the total NO of the n-th generation. Recall that S = {0, 1, 2, · · · },
P (0, 0) = 0, and

P (x, y) = P (ξ1 + ξ2 + · · ·+ ξx = y), x ≥ 1. (70)

What we need to understand from this MC {Xn}∞n=0 is to determine

ρ := ρ10 = P1(T0 <∞), (71)

i.e., the probability that the descendants of a given particle eventually become
extinct. Thus, ρ is called the extinction probability of the chain. We have two
trivial situations p0 = 0 and p0 = 1 corresponding to which ρ = 0 and ρ = 1,
respectively. WLG, we assume 0 < p0 < 1.

(b) Assume that ξ has the p.d.f.

pk := P (ξ = k), k ≥ 0, (72)

and the mean

µ := E(ξ) =
∞∑
k=0

kpk. (73)

One can show that ρ solves

ρ =
∞∑
k=0

pkρ
k. (74)

11



The existence and uniqueness of solutions to t = Φ(t) can be clarified as follows;
here,

Φ(t) =
∞∑
k=0

pkt
k, (75)

which is called the moment generating function of the p.d.f. of r.v. ξ.

(i) If µ < 1, ∃ ! ρ = 1 (extinct for sure!)

(ii) If µ = 1, ∃ ! ρ = 1 (extinct for sure!)

(iii) If µ > 1, ∃ ! ρ ∈ (0, 1) (extinct with the probability ρ ∈ (0, 1)!)

(c) For µ < 1, one can also directly show that

P1(T0 > n) ≤ E(Xn) = µnE(X0)→ 0 as n→ 0, (76)

ρ10 = P1(T0 <∞) = 1− lim
n→∞

P1(T0 > n) = 1. (77)

See the lecture for details.

• Queuing Chain:

(a) ξn denotes the NO of arrivals in the n-th unit time. {ξn}∞n=1 are i.i.d.r.v. with p.d.f.

f(k) = pk, k = 0, 1, 2, · · · . (78)

Exactly one and only one customer is served and leaves the waiting line at the end
of a unit time if there is at least one person on the line at the beginning of the unit
time. Xn denotes the NO of customers in the waiting line. Then, S = {0, 1, 2, · · · },
and

P (0, y) = f(y), y ≥ 0, (79)

P (x, y) = f(y − (x− 1)), x ≥ 1, y ≥ x− 1. (80)

Note P (0, y) = P (1, y), y ≥ 0.

(b) The first question is when the chain is irreducible. See Exercises Q37 on page 46
in the textbook. For instance, if p0 > 0 and p0 + p1 < 1 then the chain must be
irreducible.

(c) The second question is that, assuming that the chain is irreducible, we are interested
in deciding if the chain is recurrent or transient, for instance, letting

ρ := ρ00 = P0(T0 <∞), (81)

we want to decide ρ = 1 or ρ < 1. Once again one can show that ρ solves

t = Φ(t), (82)
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where Φ(t) =
∑∞

k=0 pkt
k is the moment generating function f . See the lecture for

the proof, for instance, it is based on

ρ10 = P (1, 0) +
∞∑
k=1

P (1, k)ρk0, (83)

together with ρ10 = ρ00 := ρ and ρk0 = ρk,k−1ρ10 = ρk10 = ρk.

(d) Again, the existence of solutions to t = Φ(t) can be assured in terms of µ := E(ξ)
in the same way as in the Branching Chain.

——End, Updated on Feb 15——
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