THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4240 - Stochastic Processes - 2022/23 Term 2

Chapter 0 Review on Probability

- **I. Probability Space.** A probability space is a triple (Ω, \mathcal{F}, P) .
	- Ω is a set called the sample space. An element $\omega \in \Omega$ is called an outcome.
	- $\mathcal F$ is a nonempty set of subsets of Ω , called the event space (whose elements called events), such that
		- (a) $\Omega \in \mathcal{F}$.
		- (b) If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$.
		- (c) If $A_i \in \mathcal{F}$, $i = 1, 2, \dots$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

A collection of subsets with these three properties is called a σ -algebra or σ -field.

- $P: \mathcal{F} \to [0, 1]$ is called the probability measure over the event space \mathcal{F} , satisfying
	- (a) $P(\Omega) = 1$.
	- (b) $0 \leq P(A) \leq 1, \forall A \in \mathcal{F}$.
	- (c) $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$, $\forall \{A_i\}_{i=1}^{n}$ (*n* can be finite or infinite) which is disjoint.

Conditional probability: Let A, B be two events. The probability that B happens given that A occurs is denoted by

$$
P(B|A) := \frac{P(A \cap B)}{P(A)}.\tag{1}
$$

A and B are independent if $P(B|A) = P(B)$, i.e.

$$
P(A \cap B) = P(A)P(B). \tag{2}
$$

Let A be fixed, $P_A(\cdot) := P(\cdot | A)$ is called the conditional probability measure.

For any event B, to compute $P(B)$, we may first find all possible events that cause B, for instance, Ω is the union of disjoint events A_1, \dots, A_n and under this disjoint decomposition we also know how to compute $P(B|A_i)$ and $P(A_i)$ for each i. Then

$$
P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i).
$$
 (3)

Moreover, we can also compute the probability of each cause event A_i subject to the caused event B in the way that

$$
P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}.
$$
\n(4)

This is the so-called Bayes' formula.

II. Random Variables and Distributions. A random variable (r.v.) X on (Ω, \mathcal{F}, P) is a function from Ω to \mathbb{R} , that is to assign each outcome with a real value. X is called a discrete r.v. if the range of X is a discrete set. X is called a continuous r.v. if the range of X is an interval of \mathbb{R} , for instance.

Discrete r.v.: Assume that the range of X is given by $S = \{k\}_{k=0}^N$ (N can be finite or infinite). S is called the state space.

$$
p_k = P(X = k), \quad k = 0, 1, \cdots, N,
$$
\n(5)

is called the probability density function (p.d.f.) of X. Here $X = k$ means the event

$$
\{X = k\} = \{\omega \in \Omega : X(\omega) = k\} \in \mathcal{F}.\tag{6}
$$

Note

$$
0 \le p_k \le 1, \quad \sum_{k \in S} p_k = 1. \tag{7}
$$

The following examples are important:

(a) Binomial r.v.: It means a r.v. X having the p.d.f.:

$$
P(X = k) = \binom{n}{k} p^{k} (1-p)^{n-k}, \quad 0 \le k \le n.
$$
 (8)

For instance, we perform n independent trials. At each trial, the success probability is p and the failure probability is $1 - p$. Let X be the number of successes in n trials. Then, X is a binomial r.v. given as above.

(b) Poisson r.v.: It means a r.v. X having the p.d.f.:

$$
P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \cdots,
$$
\n(9)

where $\lambda > 0$ is called the rate parameter. There are many models obeying the Poisson distribution. A general model is given as follows. An event can occur 0, 1, $2, \cdots$ times in an interval. The average number of events in an interval is designated $\lambda > 0$. Let X be the NO of events observed in an interval. Then, X is a Poisson r.v. given as above. For instance, X may denote the NO of arrivals in a unit time with $\lambda > 0$ meaning the rate of arrivals. Note that given $\lambda > 0$, by letting $n \to \infty$ with $np = \lambda$, the binomial distribution converges to the Poisson distribution, i.e.

$$
\lim_{n \to \infty, np = \lambda > 0} \binom{n}{k} p^k (1 - p)^{n - k} = e^{-\lambda} \frac{\lambda^k}{k!},\tag{10}
$$

for each $k = 0, 1, 2, \cdots$.

Continuous r.v.: Assume that there is a nonnegative function $f(\cdot)$ such that

$$
P(a \le X \le b) = \int_{a}^{b} f(t) dt, \quad -\infty < a < b < \infty. \tag{11}
$$

Then, X is a continuous r.v. and f is called the p.d.f. of X. Here $a \leq X \leq b$ means the event ${a \le X \le b} = {\omega \in \Omega : a \le X(\omega) \le b}.$ Note

$$
f(x) \ge 0, \quad \int_{-\infty}^{\infty} f(x) dx = 1.
$$
 (12)

The following are important examples:

(a) Uniform p.d.f.:

$$
f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b, \\ 0 & \text{otherwise.} \end{cases}
$$
 (13)

(b) Exponential p.d.f.:

$$
f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0, \\ 0 & \text{otherwise.} \end{cases}
$$
 (14)

(c) Normal p.d.f.:

$$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} := N(\mu, \sigma^2).
$$
 (15)

See below for the meaning of μ and $\sigma > 0$. $N(0, 1)$ is called the standard normal distribution.

III. Expectation and Variance. The expectation (or mean) of X is defined by

$$
\mu = E(X) := \sum_{k \in S} k p_k \quad \text{or} \quad \int_{-\infty}^{\infty} x f(x) \, dx. \tag{16}
$$

The 2nd moment of X is defined by

$$
E(X2) := \sum_{k \in S} k2 pk \quad \text{or} \quad \int_{-\infty}^{\infty} x2 f(x) dx.
$$
 (17)

The variance of X is defined by

$$
\sigma^{2} = \text{Var}(X) := E(X - \mu)^{2} = E(X^{2}) - \mu^{2}.
$$
 (18)

Conditional Expectation: In the discrete case, suppose that (X, Y) has a joint p.d.f.:

$$
p(x_i, y_j) = P(X = x_i, Y = y_j).
$$
\n(19)

Then,

$$
E(Y|X = x_i) = \sum_j y_j P(Y = y_j | X = x_i) = \sum_j y_j \frac{p(x_i, y_j)}{p(x_i)},
$$
\n(20)

where $p(x_i) := \sum_j p(x_i, y_j)$ is the p.d.f. of X. Therefore, fixing Y, we may regard $E(Y|X)$ as a r.v. with the p.d.f. given above. In the continuous case, suppose that (X, Y) has a joint p.d.f. $f(x, y)$ such that

$$
P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) dv du.
$$
 (21)

Then,

$$
E(Y|X=x) = \int_{-\infty}^{\infty} y \frac{f(x,y)}{f(x)} dy,
$$
\n(22)

where $f(x) = \int_{-\infty}^{\infty} f(x, y) dy$ is the p.d.f. of X. Similar to the discrete case, fixing Y, $E(Y|X)$ can be regarded as a continuous r.v. with the p.d.f. given above.

IV. Sequence of r.v.'s By repeating a random experiment at time $n = 0, 1, \cdots$ independently, we obtain a sequence of *independent and identically distributed* (i.i.d.) r.v. $\{X_n\}_{n=0}^{\infty}$. To describe $\{X_n\}_{n=0}^{\infty}$, we have the following two basic theorems in probability:

• Law of Large Numbers: Assume $\mu = E(X_n)$ for each n. The weak law of large numbers says that for any $\epsilon > 0$,

$$
\lim_{n \to \infty} P\left(\left| \frac{X_0 + \dots + X_{n-1}}{n} - \mu \right| \ge \epsilon \right) = 0. \tag{23}
$$

The strong law of large numbers says that

$$
P\left(\lim_{n\to\infty}\frac{X_0+\dots+X_{n-1}}{n}=\mu\right)=1.\tag{24}
$$

• Central Limit Theorem: Assume $\mu = E(X_n)$ and $\sigma^2 = \text{Var}(X_n)$ for each n. The central limit theorem says that the p.d.f. of

$$
\frac{X_0 + \dots + X_{n-1} - n\mu}{\sigma\sqrt{n}}\tag{25}
$$

tends to the standard normal p.d.f. $N(0, 1)$ as $n \to \infty$.

However, in many cases $\{X_n\}_{n=0}^{\infty}$ may not be independent, and indeed there exists a sort of dependence relation. In general, $\{X_n\}_{n=0}^{\infty}$ is called a (discrete) stochastic process and ${X_t}_{t\geq0}$ is called a continuous stochastic process. The goal of this elementary course is to consider the "Markov" process (to be defined) in the discrete and continuous time.

-End, updated on Jan 11th-