THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH3310 2022-2023 Homework Assignment 3 Suggested Solution

1. Consider the following system of equations:

$$
-3x + 3y - 6z = 4
$$

$$
-4x + 7y - 8z = 8
$$

$$
5x + 7y - 9z = 12
$$

- (a) Determine whether the Jacobi method converges.
- (b) Using initial approximation $x^{(0)} = (1,0,0)^T$, conduct the first two Jacobi iterations.

Solution:

(a) We have

so

$$
D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -9 \end{pmatrix}; P = \begin{pmatrix} 0 & -3 & 6 \\ 4 & 0 & 8 \\ -5 & -7 & 0 \end{pmatrix}
$$

$$
D^{-1}P = \begin{pmatrix} 0 & 1 & -2 \\ \frac{4}{5} & 0 & \frac{8}{7} \\ \frac{5}{9} & \frac{7}{9} & 0 \end{pmatrix}
$$

It can be verified that the spectral radius $\rho(D^{-1}P) \approx 0.8133 < 1$, so the Jacobi method converges.

(b)
$$
x^{(1)} = D^{-1}Px^{(0)} + D^{-1}b = \left(\frac{-4}{3}, \frac{12}{7}, \frac{-7}{9}\right)^T
$$
;
\n $x^{(2)} = D^{-1}Px^{(1)} + D^{-1}b = \left(\frac{122}{63}, \frac{-32}{63}, \frac{-20}{27}\right)^T$.

2. Consider the following system of equations:

$$
-3x + 3y - 6z = 4
$$

$$
-4x + 7y - 8z = 8
$$

$$
2x + 7y - 9z = 12
$$

(a) Determine whether the Gauss-Seidel method converges.

(b) Using initial approximation $x^{(0)} = (1, 1, 1)^T$, conduct the first two Gauss-Seidel iterations.

Solution:

(a) We have

so

$$
L_* = \begin{pmatrix} -3 & 0 & 0 \\ -4 & 7 & 0 \\ 2 & 7 & -9 \end{pmatrix}; U = \begin{pmatrix} 0 & -3 & 6 \\ 0 & 0 & 8 \\ 0 & 0 & 0 \end{pmatrix}
$$

$$
L_*^{-1}U = \begin{pmatrix} 0 & 1 & -2 \\ 0 & \frac{4}{2} & 0 \\ 0 & \frac{2}{3} & -\frac{4}{9} \end{pmatrix}
$$

It can be verified that the spectral radius $\rho(L_*^{-1}U) = \frac{4}{7} < 1$, so the Gauss-Seidel method converges.

(b)
$$
x^{(1)} = L_*^{-1}Ux^{(0)} + L_*^{-1}b = (-\frac{7}{3}, \frac{20}{21}, -\frac{10}{9})^T;
$$

\n $x^{(2)} = L_*^{-1}Ux^{(1)} + L_*^{-1}b = (\frac{116}{63}, \frac{136}{147}, -\frac{116}{567})^T.$

3. Consider the following system of equations:

$$
-3x - 2y - z = 1
$$

$$
-4x + 4y - 6z = 2
$$

$$
-2x - 3y + 5z = 3
$$

- (a) Determine whether the SOR method converges if $\omega = 1.2$.
- (b) Determine whether the SOR method converges if $\omega = 1.4$.
- (c) Using initial approximation $x^{(0)} = (0, 0, -1)^T$, conduct the first two SOR iterations where $\omega = 1.2$.

Solution:

We have

$$
D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}; L = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 2 & 3 & 0 \end{pmatrix}; U = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{pmatrix}
$$

(a) When $\omega = 1.2$, let

$$
M = (D - \omega L)^{-1}((1 - \omega)D + \omega U) = \begin{pmatrix} -\frac{1}{5} & -\frac{4}{5} & -\frac{2}{5} \\ -\frac{6}{55} & -\frac{29}{55} & \frac{33}{55} \\ -\frac{168}{625} & -\frac{75}{625} & \frac{33}{625} \end{pmatrix}
$$

It can be verified that the spectral radius $\rho(M) \approx 0.8799 < 1$, so the SOR method converges. (b) When $\omega = 1.4$, let

$$
M' = (D - \omega L)^{-1}((1 - \omega)D + \omega U) = \begin{pmatrix} -\frac{2}{5} & -\frac{14}{15} & -\frac{7}{15} \\ -\frac{14}{25} & -\frac{128}{75} & \frac{217}{75} \\ -\frac{434}{625} & -\frac{3668}{1875} & \frac{207}{3750} \end{pmatrix}
$$

It can be verified that the spectral radius $\rho(M') \approx 1.196 > 1$, so the SOR method diverges.

- (c) According to (a), we have: $x^{(1)} = Mx^{(0)} + \omega(D - \omega L)^{-1}b = (0, -\frac{6}{5}, \frac{7}{125})^T;$ $x^{(2)} = Mx^{(1)} + \omega(D - \omega L)^{-1}b = (\frac{336}{625}, \frac{4956}{3125}, \frac{164743}{78125})^T.$
- 4. Recall in Homework 2, we discussed an alternative definition for 2D DFT. Here, we introduce a more natural definition for 2D DFT. What 2D DFT does is actually applying DFT horizontally or vertically, and then apply DFT on the other direction. Let $F \in \mathbb{C}^{N \times N}$. We define 2D DFT as

$$
\hat{F}(m,n) = DFT(F)(m,n) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} F(k,l)e^{-2\pi i \frac{mk+nl}{N}}
$$

(a) Recall 1D DFT is given by $\hat{f} = \frac{1}{N} \overline{A_{\omega}} f$ where $f \in \mathbb{C}^n$ is a column vector. By applying DFT on each row of F , and second DFT on each column, show that the 2D DFT of F is can be written as

$$
\hat{F} = \frac{1}{N^2} \overline{A_{\omega}} F \overline{A_{\omega}}
$$

(b) Given the computation cost for 1D FFT is of $O(N \log(N))$. By applying FFT in above approach, we can get 2D FFT. What is the computation cost for 2D FFT?

Solution:

(a) Applying first DFT, we have

$$
\frac{1}{N}\overline{A_\omega}F^T
$$

Applying second DFT, we have

$$
\frac{1}{N}\overline{A_{\omega}}\bigg(\frac{1}{N}\overline{A_{\omega}}F^T\bigg)^T=\frac{1}{N^2}\overline{A_{\omega}}F\overline{A_{\omega}}
$$

Write $\tilde{F} = \frac{1}{N^2} \overline{A_{\omega}} F \overline{A_{\omega}}$. Next, we need to show that $\hat{F} = \tilde{F}$. Note for $A, B \in \mathbb{C}^{N \times N}$,

$$
(AB)(m, n) = \sum_{a=0}^{N-1} A(m, a)B(a, n)
$$

Then

$$
\tilde{F}(m,n) = \frac{1}{N^2} (\overline{A_{\omega}} F \overline{A_{\omega}})(m,n)
$$
\n
$$
= \frac{1}{N^2} \sum_{a=0}^{N-1} \overline{A_{\omega}}(m,a) (F \overline{A_{\omega}})(a,n)
$$
\n
$$
= \frac{1}{N^2} \sum_{a=0}^{N-1} \overline{A_{\omega}}(m,a) \sum_{b=0}^{N-1} F(a,b) \overline{A_{\omega}}(b,n)
$$
\n
$$
= \frac{1}{N^2} \sum_{a=0}^{N-1} \sum_{b=0}^{N-1} F(a,b) \times \overline{\omega^{m \times a}} \times \overline{\omega^{b \times n}}
$$
\n
$$
= \frac{1}{N^2} \sum_{a=0}^{N-1} \sum_{b=0}^{N-1} F(a,b) e^{-2\pi i \frac{ma+nb}{N}}
$$
\n
$$
= \hat{F}(m,n)
$$

So, we have $\hat{F} = \tilde{F} = \frac{1}{N^2} \overline{A_{\omega}} F \overline{A_{\omega}}$

- (b) In the first DFT, we need N FFT, which cost $O(N^2 \log(N))$. And so as the second FFT. So, the overall computation cost is of $O(N^2 \log(N))$.
- 5. Consider the following iterative scheme:

$$
x_{k+1} = (\alpha I - tA)x_k + tb
$$

where $\alpha \geq 1$. Suppose that A is symmetric positive definite matrix in $\mathbb{R}^{n \times n}$, with eigenvalues $\lambda_n \geq \lambda_{n-1} \geq \cdots \geq \lambda_1 > 0.$

- (a) Show that the above scheme converges if and only if $\frac{\alpha-1}{\lambda_1} < t < \frac{\alpha+1}{\lambda_n}$.
- (b) Prove that the optimal t, in the sense of rate of convergence, is $\frac{2\alpha}{\lambda_1+\lambda_n}$
- (c) Suppose the scheme converges, show that the scheme converges to the solution for $Ax = b$ if $\alpha = 1$.

Solution:

(a) Since A is symmetric positive definite, all eigenvalues of A are positive real numbers, and $\lambda_n = \rho(A)$. This implies that all eigenvalues of $B = \alpha I - tA$ are real as well. Note that (λ, v) is an eigen-pair of A iff $(\alpha - t\lambda, v)$ is an eigen-pair of B. Assume that $\frac{\alpha - 1}{\lambda_1} < t < \frac{\alpha + 1}{\lambda_n}$, then for all $i = 1, \dots, n$, since $\alpha \geq 1$,

$$
\alpha - 1 < \lambda_1 t \le \lambda_i t \le \lambda_n t < \alpha + 1
$$

$$
1 > \alpha - \lambda_i t > -1
$$

This implies that $\rho(\alpha I - tA) < 1$, and implies convergence. Also, if $t \ge \frac{\alpha+1}{\lambda_n}$ or $t \le \frac{\alpha-1}{\lambda_1}$, then $\rho(\alpha I - tA) \geq 1.$

(b) Obviously, $\rho(\alpha I - tA) = \max\{|\alpha - t\lambda_1|, |\alpha - t\lambda_n|\}\$. Minimum of ρ is attained when

$$
|\alpha - t\lambda_1| = |\alpha - t\lambda_n|
$$

$$
\alpha - t\lambda_n = t\lambda_1 - \alpha
$$

$$
\implies t = \frac{2\alpha}{\lambda_1 + \lambda_n}
$$

(c) Suppose $\alpha = 1$. Then we have:

$$
(\alpha I - tA)x^* + tb = x^* - t(Ax^* - b) = x^*
$$

which implies that the iterative scheme converges to x^* .

6. Consider an $n \times n$ matrix M given by:

$$
M = \frac{1}{10} \begin{bmatrix} 0 & -1 & & & \\ 1 & 0 & -1 & & \\ 1 & & 0 & \ddots & \\ \vdots & & & \ddots & -1 \\ 1 & & & & 0 \end{bmatrix}
$$

Show the convergence of the following iterative scheme:

$$
x_{k+1} = Mx_k + b
$$

where $b \in \mathbb{R}^n$.

Solution:

By Gershgorin Circle Theorem, we can see that all eigenvalues are in the ball centred at 0 with radius 0.2. Then, we have the spectral radius is less than 1, and hence the scheme is convergent.