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* Solutions to tutorial problems will be posted after tutorial classes.

(@) f(x) = 22 is continuous on R. Given any ¢ € R, and any ¢ > 0, we pick §
min{1, ﬁ} > 0, then if z is in the range of 0 < |z — ¢| < 0, we have |z|
le| + |z — ¢ < |+ <|c|+1,and so |z + | < |z] + |c| < 2|c| + 1.

2> =P = v +c| |z —c < (2] +1)5 <e.

* Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

* If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or
in person during office hours.

(b) f(x) = =% is continuous on R\ {£1}. For any ¢ € R\ {£1} and any ¢ > 0, firstly
consider = min{|c + 1|, |¢c — 1|} /2. Then for any « € (¢ — r, ¢ + r), we have by
triangle inequality min{ |z +1|, |z — 1|} > min{||c+ 1| —|c—z||, |lc—1|—|c—z]|}.
Note that both |c¢ + 1], |¢ — 1| greater than or equal to min{|c + 1|, |c — 1|} = 2r >

lc —x

;somin{|jc+ 1| — |c—z|,||c = 1| = |e = z||} = min{|c+ 1] — |c — x|, |c —

1| = |e = z|} = min{|c+ 1], |c — 1|} — |¢ — 2| > 2r — r = r. Finally, from the

above, for any x in the range of 0 < |z — ¢| < r, we have

el +1 (el +r)+1 _ fel® Fler+1 _

(2> =1)(c2 =1 = r*-(2r)? 47 K

Now given any ¢ > 0, we may take 6 = min{r,e¢/K}, then for x in the range of

0<l|z—c¢| <,

x® —cx’+c—=x
(22 —1)(c2 - 1)

lzc| + 1 | |
T —c
~ (22 = 1)(c2 = 1)
lc[? + Jelr + 1
< — )
e
=Kj<e.

We would also like to show that f is discontinuous at +1. Simply consider the se-
quences (z,) = (y/1+ %) — land (—z,) — —1. We have f(z,) =n\/1+ 1 =
vn?+n — oo and f(—z,) = —vVn?+n — —oo. So by sequential criterion f

cannot be continuous at those points.



(c) First, we claim that f(z) is discontinuous for x non-zero rational number. This can
be simply seen by sequential criterion. Given any rational §, by density of R \ Q,

there is a sequence (r,,) of irrational number so that limr,, = §, then lim f(r,) =
limr, = £ f(2)if £ # 0.

Next, we show that f(x) is continuous at x = 0, given € > 0, simply take 6 = e,
then for 0 < |z| < 4, if « is irrational, [f(z)| = |z| < ¢, and if = £ is rational,
|f(B)] = Ip| - [sin(1/q)| < |p[-[1/q| = |z] < e. In the above, we have used the
inequality | sina| < |al.

Finally, we will prove that for c irrational, f(z) is continuous at c. We will need
the following fact, which we take for granted, lim,_, % = 1. First, given any
e > 0, we may pick 1 > a > 0ande/2 > ¢ > 0sothata(r +d') < ¢/2. Given
such a, by the limit we mentioned, there exists N € N so that for ¢ > N, we
have 1 — a < ¢sin(1/q) < 1+ a. For this N, we note by a similar argument as
in Thomae’s function, there are finitely many rational numbers within distance at
most 1 to ¢, whose reduced form has denominator ¢ less than N. So there must exist
6" > 0 small enough so thatany 2 € QN (c— 0", c+¢") written in reduced form has
g > N. Now we take 6 = min{d’,d"}, then for x € (¢ — J,c + ¢), if x is irrational,
then [f(z) — | = [z —c| = § < ¢/2 < e If v = L is rational and written in reduced
form, then

+a~£

S‘——c
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q
<0 +a(r+9)

< € 4 €

-+ -==¢
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. Yes, if f 4+ g was continuous, then along with f being continuous would imply g =
(f + g) — f is also continuous, which would be a contradiction.

. Take f(z) = % forx # 0, and f(x) = 0 for x = 0, clearly f(x) is discontinuous at x = 0.

Tz

If we take g = f also, then g o f(z) = x for any x € R, which is a continuous function.

. First, note that f(0) = f(0+0) = f(0) + f(0) implies that f(0) = 0. Suppose that f
is continuous at ¢, then given € > 0, we can find § > 0 so that 0 < |y — ¢| < ¢ implies
|f(y) — f(c)] = |f(y — ¢)| < e. Now if ¢ is any other point in R, taking the same § > 0,
note thatif 0 < |z — /| < 0, then0 < |[(x — ' +¢) — ¢| < d,1i.e. y = x — ¢ + csatisfies
the premise above, so we have € > |f(z — ' +c—c¢)| = |f(z) — f()+ f(c) — f(c)| =
|[f(x) = F(&)].

. First note that for all z, g(z) = g(0 + ) = ¢(0)g(x). If g(x) = 0 for all z, then it
is a constant function, and hence is continuous. Otherwise, g(x) # 0 for some z, then
dividing through ¢(z), we must have g(0) = 1. Furthermore, g(x) is non-vanishing, if say
g(x) = 0 for some z, then 1 = ¢g(0) = g(x —z) = g(x)g(—x) = 0, which is absurd. Now
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for any ¢ # 0, given any ¢ > 0, by continuity of g at 0, we have § > 0 sothat 0 < |z| < ¢
implies |g(z) — 1| < €/|g(c)|. For the same §, if x is in the range of 0 < |z — ¢| < 9, note
that [g(z — ¢) — 1] < ¢/[g(c)[. Therefore € > |g(c)g(z — ¢) — g(¢)| = [g(x) — g(c)|.

(a) We will prove that the complement D¢ is open. Given any ¢ € D¢, by assumption,

(b)

(c)

(d)

there is some 0,, > 0 so that forall z,y € (¢c—6.,c+0d.), we have | f(z) — f(y)| < e
Suppose d is another point in (¢ — d., ¢ + d.), then simply take 6, = min{|c + 0. —
d|,|c —d. —d|}, we have (d — 64,d + d4) C (¢ — I, ¢ + d.), and therefore for any
z,y € (d—daq,d+ dq), we have | f(z) — f(y)| < e, ie. (¢c—0d.,c+0.) C DE Thus
we may write as an arbitrary union of open intervals

D¢ = |J(c—dcc+d.).

ceD¢

Suppose €1 < €, if x is €-continuous, then there is § so that for any y, z € (x —
d,x 4+ 6) we have | f(y) — f(z)| < 1 < €2, so x is automatically e>-continuous. By
contrapositive, if x is not ez-continuous, then it is not €;-continuous, i.e. D, C D,,.

If f is continuous at ¢, then for any € > 0, there is some d so that whenever 0 <
|z — | < 0, we have |f(x) — f(c)| < €/2. Then for any x,y € (¢ — d,c+ J), we
have [f(z) — f(y)| < [f(z) — f(O)] + |f(y) — f(c)| < €/2+¢€/2 =€ So fis

e-continuous at ¢, for arbitrary e. In our notation, | J._, D, C Dy.

If f is not continuous at ¢, then there exists some € > 0 so that for any 6 > 0, there
is some x5 with 0 < |z5 — ¢| < § so that |f(x5) — f(c)| > €. In particular taking
x = x5 and y = ¢, we see that this implies that f is not e-continuous at c. In terms
of the subsets, this says that Dy C UE>0 D..

Now we claim that | .., D = |J,, D1. The (2) direction is trivial, as we are taking

union over a subfamily. For the (C) direction, simply note that by part (b), if z € D,
then by AP we may take some n € N big enough so that % < €, then D, C D:.
This concludes the proof. "

e>0



