THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 8 3rd November2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. For each of the following limit, if it exists, find its value (including $\pm \infty$) and prove using $\epsilon \delta$ definitions; otherwise explain why limit does not exist.
 - (a) $\lim_{x \to 1^+} \frac{x^2}{x-1}$.

(b)
$$\lim_{x \to 1} \frac{x^2}{x-1}$$
.

(c)
$$\lim_{x\to 0} \frac{\sqrt{x+1}}{x}$$

(d)
$$\lim_{x\to\infty} \frac{\sqrt{x+1}}{x}$$

(e)
$$\lim_{x\to\infty} \frac{x-\sqrt{x}}{x+\sqrt{x}}$$
.

- 2. Let $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$ and $c \in D(A) \setminus A$, assume that f > 0 on A, prove that $\lim_{x\to c} f = \infty$ if and only if $\lim_{x\to c} \frac{1}{f} = 0$.
- 3. Let f be defined on $(0, \infty)$, prove that $\lim_{x\to\infty} f(x) = L$ if and only if $\lim_{x\to 0^+} f(\frac{1}{x}) = L$.
- 4. Let f, g be functions defined on \mathbb{R} , suppose that $\lim_{x\to\infty} f = L$ and $\lim_{x\to\infty} g = \infty$, prove that $\lim_{x\to\infty} f \circ g = L$.
- 5. For any $x \in \mathbb{R}$, denote $\lfloor x \rfloor$ the floor function, which outputs the greatest integers smaller than or equal to x (e.g. $\lfloor e \rfloor = 2$, and $\lfloor -1.5 \rfloor = -2$.) Determine the points of continuity for the following functions.
 - (a) $\lfloor \sin x \rfloor$.
 - (b) $\lfloor 1/x \rfloor$, where $x \neq 0$.
- 6. Suppose that f : ℝ → ℝ is continuous at c, and f(c) > 0. Prove that there exists a neighborhood of c on which f is positive, i.e. ∃δ > 0 such that for x satisfying |x-c| < δ, we have f(x) > 0.