THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 7 27th October 2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. Prove the following by using $\epsilon \delta$ definitions, or sequential criterion.
 - (a) $\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$.
 - (b) $\lim_{x \to 8} \sqrt[8]{x} = 2.$
 - (c) $\lim_{x \to 1} x^3 2x = -1$.
 - (d) $\lim_{x\to 2} \frac{x^3-2}{x^2-3} = 6.$
 - (e) $\lim_{x\to 0} x \cos x (x^2 + 1) = 0.$
 - (f) $\lim_{x \to 1} \frac{x-1}{x+1} \neq 1$.
 - (g) $\lim_{x\to 0} x + \frac{x}{|x|}$ does not exist.
- 2. Suppose $c \in \mathbb{R}$, and f is a function on \mathbb{R} so that $\lim_{x\to c} f(x)^2 = L$.
 - (a) If L = 0, show that $\lim_{x\to c} f(x) = 0$ as well.
 - (b) If $L \neq 0$, provide an example in which $\lim_{x\to c} f(x)$ does not exist.
- 3. Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = x if x is rational, and f(x) = 0 for x irrational.
 - (a) Show that $\lim_{x\to 0} f(x)$ exists.
 - (b) Show that $\lim_{x\to c} f(x)$ does not exist for $c \neq 0$.
- 4. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a bounded function so that $\lim_{x\to c} f(x)$ does not exist, prove that there are two convergent sequence $(x_n), (y_n)$ with $\lim x_n = \lim y_n = c$, so that $(f(x_n)), (f(y_n))$ are convergent sequences with $\lim f(x_n) \neq \lim f(y_n)$.