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• Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

• Solutions to tutorial problems will be posted after tutorial classes.

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. (a) Given ϵ > 0, pick N ∈ N so that N > 8/ϵ, then for any n,m ≥ N ,
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(b) Let N ≥ 1 to be fixed later, for n > m ≥ N , consider
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Given ϵ > 0, simply fix N ∈ N so that N ≥ 1/ϵ, then the above calculation shows
that |xn − xm| < 1

N
≤ ϵ for n,m ≥ N .

(c) Notice that xn−xn−1 = −1
2
(xn−1−xn−2), therefore |xn−xn−1| ≤ 1

2
|xn−1−xn−2|

and we may apply the result of Q3 to conclude that it is Cauchy, or just follow the
proof of Q3 as it is just the same.

2. The answer is no, the sequence may not be Cauchy. A counterexample is given by the
harmonic series xn :=

∑n
k=1
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, then |xn+1 − xn| = 1
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→ 0, despite xn not being a
Cauchy sequence.



3. If x1 = x2, then by the inequality, the whole sequence is constant. Otherwise let N ≥ 1
to be fixed later, for n > m ≥ N
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Recall that for 0 < C < 1, we may rewrite C = 1
1+r

for some r > 0, and hence obtain
from Bernoulli’s inequality the bound
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So given ϵ > 0, we may pick N ∈ N so that N ≥ 1
r
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− 1) + 1, so that when
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≤ ϵ by the above calculation.

4. Suppose that (xn) is a monotone sequence, and (xnk
) is a Cauchy subsequence. By

replacing xn with −xn if necessary, we may assume that xn is monotonic increasing.
Now given ϵ > 0, by Cauchy-ness of the subsequence, there is some K ∈ N so that
xnk

−xnj
< ϵ for any k > j ≥ K. Now simply take N = nK ∈ N, then for n > m ≥ N ,

we can find some k so that nk > n > m ≥ nK , then we have xn − xm ≤ xnk
− xnK

< ϵ.

5. Suppose (xn) is a bounded and monotone sequence, again assume that xn is monotone
increasing, otherwise simply replace xn by −xn. We will prove by contradiction. Suppose
on the contrary that (xn) is not Cauchy. Then there is some ϵ > 0 so that for any N ∈ N
there is some n > m ≥ N where xn − xm ≥ ϵ. By monotonicity, we might as well take
m = N .

Start by taking n1 = 1, then we have n2 > n1 with xn2 −xn1 ≥ ϵ. For this n2, we can find
n3 > n2 so that xn3 − xn2 ≥ ϵ. Inductively, we have nk > nk−1 so that xnk

− xnk−1
≥ ϵ.

We will now show that (xn) must be unbounded above. Take any M > x1, by Archimedean
property there is some K ∈ N so that Kϵ > M − x1. Then we have
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) ≥ x1 +Kϵ > M.

This is a contradiction. So (xn) must be Cauchy to begin with.

6. Let A be a subset of R that is bounded above. The goal is to show that supA exists using
only Cauchy criterion and AP. First pick a1 ∈ A and b1 any upper bound of A, consider
1
2
(a1 + b1), if it is an upper bound of A, then we set a2 = a1 and b2 = 1

2
(a1 + b1).



Otherwise if it is not an upper bound, then we set a2 = 1
2
(a1 + b1) and b2 = b1. Repeat

this process to obtain an and bn inductively, by considering whether 1
2
(an−1 + bn−1) is an

upper bound of A.

Note that by construction (an) is monotonic increasing, (bn) is monotonic decreasing.
And all an are not upper bound, meanwhile all bn are upper bounds of A. By results of
Q5, we know that (an) and (bn) are Cauchy sequences (note that we used AP in the proof
of Q5). By Cauchy criterion, lim an and lim bn exists. Furthermore we have bn − an =
1
2
(bn−1 − an−1) =

1
2n−1 (b1 − a1), therefore lim an = lim bn =: x.

The claim is that x = supA. First, it is an upper bound of A because bn’s are upper
bounds, i.e. for any a ∈ A, bn ≥ a. Since taking limits preserves order, we have
x = lim bn ≥ a for any a. Next, x is also the least upper bound. By convergence of
an, for any ϵ > 0, there is some N ∈ N so that x − aN < ϵ. Rearranging this gives
x− ϵ < aN , since aN is not an upper bound, x− ϵ is not an upper bound as well.

Remark: Cauchy criterion gives an alternative way to understand completeness. Now we
have two intimately related notions that are equivalent (up to AP). The advantage is that
both can be generalized in different contexts. For example, axiom of completeness (de-
fined via supremum) can be generalized to partially ordered sets, meanwhile the Cauchy
condition can be generalized to metric spaces.


