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• Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

• Solutions to tutorial problems will be posted after tutorial classes.

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. (a) We claim that lim 3n+1
2n+5

= 3
2
. To see this, given any ϵ > 0, consider∣∣∣∣3n+ 1

2n+ 5
− 3

2

∣∣∣∣ = ∣∣∣∣6n+ 2− 6n− 15

4n+ 10

∣∣∣∣ = 13

4n+ 10
<

13

4n
.

Therefore, if we pick N0 ∈ N so that N0 > 13
4ϵ

, whose existence is guaranteed by
Archimedean property. Then for any n ≥ N0, according to the above,∣∣∣∣3n+ 1

2n+ 5
− 3

2

∣∣∣∣ < 13

4n
≤ 13

4N0

< ϵ.

(b) We claim that lim n2−1
2n2+3

= 1
2
. Given any ϵ > 0, consider∣∣∣∣ n2 − 1

2n2 + 3
− 1

2

∣∣∣∣ = ∣∣∣∣2n2 − 2− 2n2 − 3

4n2 + 6

∣∣∣∣ = 5

4n2 + 6
<

5

4n2
.

If we pick N0 ∈ N by AP so that N0 >
√

5
4ϵ

, then for any n ≥ N0, we have∣∣∣∣ n2 − 1

2n2 + 3
− 1

2

∣∣∣∣ < 5

4n2
≤ 5

4N2
0

< ϵ.

(c) We claim that lim
√
4n2 + n− 2n = 1

4
. Given any ϵ > 0, we note that∣∣∣∣√4n2 + n− 2n− 1

4

∣∣∣∣ =
∣∣∣∣∣(4n2 + n)− (2n+ 1

4
)2

√
4n2 + n+ 2n+ 1

4

∣∣∣∣∣ = 1/16√
4n2 + n+ 2n+ 1/4

.

The latter expression is simply less than 1
32n

. Therefore if we pick N0 ∈ N by AP
so that N0 >

1
32ϵ

, then for any n ≥ N0, we have∣∣∣∣√4n2 + n− 2n− 1

4

∣∣∣∣ < 1

32n
≤ 1

32N0

< ϵ.



(d) We will apply Bernoulli’s inequality to show that limnan = 0 for 0 < a < 1. First
rewrite a = 1/(1 + r) where r > 0, then by (1 + r)n = 1 + nr + n(n−1)

2
r2 + ... ≥

n(n−1)
2

r2, we have for n ≥ 2,

nan =
n

(1 + r)n
≤ n

n(n− 1)r2/2
=

2

(n− 1)r2
.

So given any ϵ > 0, we can choose N0 ∈ N so that N0 ≥ 2 and N0 >
r2

2ϵ
+ 1. Then

for any n ≥ N0, we have

nan ≤ 2

(n− 1)r2
≤ 2

(N0 − 1)r2
< ϵ.

(e) (Method 1) Let b > 1, then by monotonicity of n-th root, b
1
n > 1

1
n = 1. So we can

consider yn := b
1
n − 1 > 0. Then by Bernoulli’s inequality,

b = (1 + yn)
n ≥ 1 + nyn > nyn.

So we have b/n > yn > 0. Given ϵ > 0, we choose N0 ∈ N so that N0 ≥ b/ϵ, then
for n ≥ N0, we have

yn = |b
1
n − 1| < b

n
≤ b

N0

< ϵ.

(Method 2) Write b = 1 + r, the claim is that (1 + r)
1
n ≤ 1 + r

n
. To see this,

simply take n-th power of both sides, we get 1 + r ≤ 1 + n · r
n
+ n(n−1)

2
r2

n2 + ...
which is clearly true. Since taking n-th power is order preserving, we obtain the first
inequality. Then given any ϵ > 0, we can pick N0 ∈ N so that N0 > r

ϵ
. Then for

n ≥ N0, we have
|b

1
n − 1| ≤ r

n
≤ r

N0

< ϵ.

(f) By taking c = 1
b
, then b > 1 and we may apply part (e) to conclude that c

1
n = 1

b
1
n
→

1/1 = 1.

(g) Again writing xn = n
1
n = 1+ yn, note that yn > 0 and then n = xn

n = (1 + yn)
n ≥

1 + nyn + n(n − 1)y2n/2 > n(n − 1)y2n/2. Therefore we have the inequality when
n > 1, √

2

n− 1
≥ yn ≥ 0.

So given ϵ > 0, we may pick N0 ∈ N so that N0 ≥ 2 and N0 > 1 + 2
ϵ2

. Then for
any n ≥ N0, we have

|n
1
n − 1| = yn ≤

√
2

n− 1
≤

√
2

N0 − 1
< ϵ.

2. We will prove that (xn) is convergent using bounded monotone theorem. First, we show
that if xn ≥

√
2 then so is xn+1 ≥

√
2. This is direct since xn+1 = 1

2
(xn + 2/xn) ≥

1
2
(
√
2 + 2/

√
2) =

√
2, there (xn) is bounded below by

√
2. Next, we note that xn is

monotonic decreasing, as

xn+1 − xn =
1

2

(
2

xn

− xn

)
≤ 1

2

(
2√
2
−
√
2

)
= 0.



Hence (xn) is convergent. Denote L = limxn, then again L = limxn+1 and the recur-
sively relation implies that

L =
1

2

(
L+

2

L

)
.

Therefore L2 = 2 and hence L =
√
2. Note that L cannot be −

√
2 because otherwise,

there is some xj < −
√
2 +

√
2 = 0 <

√
2, contradicting the fact that xn are bounded

below by
√
2.

3. Suppose that lim xn+1

xn
= c < 1, then pick ϵ0 > 0 small enough so that q := c + ϵ0 < 1

still. Then there exists some N0 ∈ N so that for n ≥ N0, we have

xn+1

xn

− c < ϵ.

Therefore for n > N0, we have

0 < xn = xN0

xN0+1

xN0

· · · xn

xn−1

< xN0q
n−N0+1.

By Tutorial 2 Q6, the RHS of the above has limit equals to 0. Therefore by squeeze
theorem, we have limxn = 0.

4. No, the harmonic series xn :=
∑n

k=1
1
k

provides a counter example, clearly |xn+1−xn| =
1

n+1
< 1

n
. It is a divergent sequence because it is unbounded. Given any 0 < M ∈ N, we

have

x2M =
2M∑
k=1

1

k
>

1

2
+

1

2
+

(
1

4
+

1

4

)
+ ... =

M + 1

2
.

Here, we are bounded 1
k
> 1

2j
for 2j−1 + 1 < k < 2j , therefore

2j∑
k=2j−1+1

1

k
>

2j−1

2j
=

1

2
.

Since M is arbitrary, for any real number, there is some xn greater than the chosen real
number. By proposition 2.7, xn cannot be convergent.

5. Note that x 7→ x
1
n is an order preserving function. Therefore taking n-th root on the

inequality given in the assumption yields

δ
1
n < x

1
n
n < n

k
n .

According to Q1 part e,f and g, we know that lim δ
1
n = limn

1
n = 1. Then by squeeze

theorem, limx
1
n
n = 1 as well.

6. Suppose that limxn = L, then by triangle inequality,∣∣∣∣x1 + ...+ xn

n
− L

∣∣∣∣ = ∣∣∣∣x1 − L

n
+ ...+

xn − L

n

∣∣∣∣ ≤ ∣∣∣∣x1 − L

n

∣∣∣∣+ ...+

∣∣∣∣xn − L

n

∣∣∣∣ .



Given ϵ > 0, we can find some N0 ∈ N so that for m > N0 |xm −L| < ϵ. For this choice
of N0, write M =

∑N0

i=1 |xi − L|. We can find some other N1 ∈ N so that M
n

< ϵ for
n ≥ N1.

Then for n > maxN0, N1, we have∣∣∣∣x1 + ...+ xn

n
− L

∣∣∣∣ ≤ 1

n

N0∑
j=1

|xj − L|+ 1

n

n∑
j=N0+1

|xj − L|

≤ M

n
+

n−N0

n
ϵ

< ϵ+ ϵ = 2ϵ.

This proves the convergence of yn.

For a counter-example of the converse of the statement. Consider xn = (−1)n+1, then it
is divergent since given any L, L will have distance greater than 1 with 1 or −1, so if we
pick ϵ = 1, we see that limxn ̸= L. However, yn = 1

n
(x1 + ...+ xn) =

1
n

when n is odd,
and yn = 0 when n is even. Then it is clear that lim yn = 0.


