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• Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

• Solutions to tutorial problems will be posted after tutorial classes.

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. (a) First note that for any q ∈ Q, q2 ≥ 0, so X is bounded below. By completeness
axiom, an infimum must exist. To see that 0 is precisely the infimum, consider any
ϵ > 0, without loss of generality, we may assume that 1 > ϵ, otherwise replace ϵ
with a smaller ϵ′. By Archimedean property, specifically corollary 1.9, we can find
n ∈ N so that q = 1

n
∈ Q satisfies 1 > ϵ > q > q2. Hence 0+ ϵ is no longer a lower

bound, and 0 is indeed the infimum. As for supremum, N ⊂ X and N is unbounded,
if supX exists that would imply supN exists, which is a contradiction.

(b) Note that |(−1)n/n| ≤ 1/n ≤ 1, so X is bounded and has both supremum and
infimum. Consider when n = 2k is even, it is clear that (−1)2k1/(2k) = 1/(2k) >
1/(2k+2). Therefore 1/2 is in fact the maximum of X . Similarly, for n = 2k+1 is
odd, (−1)2k+11/(2k+1) = −1/(2k+1) < −1/(2k+3) and so −1 is the minimum
of X .

(c) We may rearrange the condition 4x−x2 > 3 as 1 > x2−4x+4 = (x−2)2. Thus the
condition is equivalent to that 1 > |x−2|, in other words x ∈ (1, 3). The supremum
and infimum of a bounded interval are just the two endpoints respectively. To see
this, clearly 3 is an upper bound of (1, 3). And for any ϵ > 0, we may find n ∈ N
so that 3 − ϵ < 3 − 1

n
∈ (1, 3). The argument is similar for showing that 1 is the

infimum.

(d) For any r ∈ R and q ∈ Q, |q − r| ≥ 0 so 0 is a lower bound. By proposition 1.12,
for any ϵ > 0, there exists a rational number q in the interval (r− ϵ, r+ ϵ), therefore
such q satisfies |q − r| < ϵ. Hence 0 is the infimum. As for supremum, it is clear
that X is unbounded above.

2. Suppose that sup(A) exists, then A is bounded above, say there is x ∈ R so that x > a
for any a ∈ A, therefore −x < −a for any a ∈ A. This is equivalent to saying that
−A is bounded below, so by completeness admits an infimum. To prove the equality
inf(−A) = − sup(A), we will use the ϵ-characterization. First, take x = sup(A), we
note that −x is a lower bound of −A. Suppose not, then there is an element −a ∈ −A so
that −x > −a, this implies x < a for a ∈ A. This contradicts the fact that x is an upper
bound of A. Now, to see that −x is the infimum, consider −x + ϵ for some ϵ > 0, since
x itself is the supremum, we can find a ∈ A so that x − ϵ < a, flipping the sign yields
−x+ ϵ > −a ∈ −A. This completes the proof.



3. As subsets, we have A−B = A+ (−B). So by proposition 1.6 and Q2, we have

inf(A−B) = inf(A+ (−B)) = inf(A) + inf(−B) = inf(A)− sup(B).

4. To prove the claim, it suffices to show that for any ϵ > 0, we have sup(A) < inf(B) + ϵ.
Fix any ϵ > 0, by property of infimum, there exists b ∈ B so that a < b < inf(B) + ϵ
holds for any a ∈ A. Since b is an upper bound of A by assumption, sup(A) ≤ b and this
completes the proof.

5. Suppose x be the infimum of T , in particular it is a lower bound of S ⊂ T , therefore
x = inf T ≤ inf S. The inequality for supremum is similar.

6. If S contains an upper bound of itself, say s0, then s0 ≥ s for any s ∈ S. In particular if
we pick any ϵ > 0, clearly s0 − ϵ < s0 ∈ S. So s0 − ϵ is no longer an upper bound, so s0
is the supremum. Uniqueness is clear since s0 ≥ s1 and s1 ≥ s0 implies s0 = s1.

7. Suppose we know inf{1/n : n ∈ N} = 0, by ϵ-characterization, this means that for any
ϵ > 0, we can find an element 1/n so that 1/n < ϵ. To prove the Archimedean property,
let M ∈ R, if M ≤ 0 then we are done since M ≤ 0 < 1. Otherwise M is positive, and
taking 1/M = ϵ > 0, we can find 1/n < ϵ = 1/M . Therefore such integer n satisfies
n > M .

8. (a) Again, we will show instead that for any fixed ϵ > 0, we have supx∈D f(x) − ϵ <
supx∈D g(x). By ϵ-characterization, there is some x0 ∈ D so that supx∈D f(x)−ϵ <
f(x0). Together with f(x0) ≤ g(x0) ≤ supx∈D g(x), we are done.

(b) This follows immediately from Q4, by taking f(D) = A and g(D) = B.

(c) Let D = [0, 2], f(x) = x and g(x) = x + 1. Then clearly f(x) ≤ g(x) for any x.
But supx∈[0,2] f(x) = 2, meanwhile infx∈[0,2] g(x) = 1.

9. (The original problem contains a typo that has since been fixed, please see the corrected
version.)

(a) We will show that f(x) = supy∈D(2x + y) = 2x + 1 for any fixed x ∈ D. The
argument is essentially the same as showing that 1 is the supremum of the interval
(0, 1). One can see that for fixed x0 ∈ D, the image of h(x0, y) = 2x0 + y is given
by the interval (2x0, 2x0 +1) which has supremum 2x0 +1. By the same argument,
we can show that infx∈D f(x) = 1 since f(D) is just the interval (1, 3).

(b) The argument is identical to the previous part, g(y) is equal to y since the image of h
for a fixed y is given by the interval (y, y + 2). Then supy∈D g(y) = sup(0, 1) = 1.
Note that the answer coincides to that of part (a).

(a) For fixed x ∈ D = (0, 1), clearly we can find some y ∈ (0, 1) so that y ≤ x, like
just take y = x. Then h(x, y) = 1 must be the supremum since the function h can
only take two values. So f(x) = supy∈D h(x, y) = 1 regardless of what x is, so
infx∈D f(x) = 1.

(b) Similarly for fixed y ∈ (0, 1), we can find x ∈ (0, 1) so that x < y, for such pair
we get h(x, y) = 0, hence g(y) = infx∈D h(x, y) = 0 is again a constant. So
supy∈D g(y) = 0. Note that the answer differs from that of part (a).



10. Again, we will prove the inequality by equivalently showing that supy∈Y infx∈X h(x, y)−
ϵ < infx∈X supy∈Y h(x, y) for any ϵ > 0. Consider the LHS of the inequality, by ϵ-
characterization, we can find some y0 ∈ Y so that

sup
y∈Y

inf
x∈X

h(x, y)− ϵ < inf
x∈X

h(x, y0).

Now clearly for any x ∈ X , by definition of supremum,

h(x, y0) ≤ sup
y0∈Y

h(x, y0).

Applying the infimum version of Q8a, we have

inf
x∈X

h(x, y0) ≤ inf
x∈X

sup
y0∈Y

h(x, y0).

Combined with the inequality above, we get the desired result.


