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* Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

* Solutions to tutorial problems will be posted after tutorial classes.

* If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or
in person during office hours.

1. (a) First note that for any ¢ € Q, ¢> > 0, so X is bounded below. By completeness
axiom, an infimum must exist. To see that 0 is precisely the infimum, consider any
e > 0, without loss of generality, we may assume that 1 > ¢, otherwise replace ¢
with a smaller ¢’. By Archimedean property, specifically corollary 1.9, we can find
n € Nsothatqg = % € Q satisfies 1 > € > ¢ > ¢°. Hence 0 + ¢ is no longer a lower
bound, and 0 is indeed the infimum. As for supremum, N C X and N is unbounded,
if sup X exists that would imply sup N exists, which is a contradiction.

(b) Note that [(—1)"/n| < 1/n < 1, so X is bounded and has both supremum and
infimum. Consider when n = 2k is even, it is clear that (—1)%1/(2k) = 1/(2k) >
1/(2k+2). Therefore 1/2 is in fact the maximum of X. Similarly, for n = 2k+1is
odd, (—1)**11/(2k+1) = —1/(2k+1) < —1/(2k+3) and so —1 is the minimum
of X.

(c) We may rearrange the condition 4x —z? > 3as 1 > 22 —4x+4 = (x—2)2. Thus the
condition is equivalent to that 1 > |z — 2|, in other words € (1, 3). The supremum
and infimum of a bounded interval are just the two endpoints respectively. To see
this, clearly 3 is an upper bound of (1,3). And for any ¢ > 0, we may find n € N
sothat 3 —e < 3 — % € (1,3). The argument is similar for showing that 1 is the
infimum.

(d) Forany r € Rand ¢ € Q, |¢ — | > 0 so0 0 is a lower bound. By proposition 1.12,
for any € > 0, there exists a rational number ¢ in the interval (r — €,  + €), therefore
such ¢ satisfies |¢ — 7| < e. Hence 0 is the infimum. As for supremum, it is clear
that X is unbounded above.

2. Suppose that sup(A) exists, then A is bounded above, say there is x € R so that x > a
for any a € A, therefore —x < —a for any a € A. This is equivalent to saying that
— A is bounded below, so by completeness admits an infimum. To prove the equality
inf(—A) = —sup(A), we will use the e-characterization. First, take x = sup(A), we
note that —z is a lower bound of —A. Suppose not, then there is an element —a € —A so
that —x > —a, this implies x < a for a € A. This contradicts the fact that x is an upper
bound of A. Now, to see that —z is the infimum, consider —x + € for some ¢ > 0, since
x itself is the supremum, we can find a € A so that z — ¢ < a, flipping the sign yields
—x + € > —a € —A. This completes the proof.
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. As subsets, we have A — B = A + (—B). So by proposition 1.6 and Q2, we have

inf(A — B) = inf(A + (—B)) = inf(A) + inf(—B) = inf(A) — sup(B).

. To prove the claim, it suffices to show that for any € > 0, we have sup(A) < inf(B) + €.
Fix any € > 0, by property of infimum, there exists b € B so that a < b < inf(B) + ¢
holds for any a € A. Since b is an upper bound of A by assumption, sup(A) < b and this
completes the proof.

. Suppose x be the infimum of 7', in particular it is a lower bound of S C T, therefore
x = inf T" < inf S. The inequality for supremum is similar.

. If S contains an upper bound of itself, say sg, then sy > s for any s € S. In particular if
we pick any € > 0, clearly s) — € < 59 € S. So sy — € is no longer an upper bound, so s
is the supremum. Uniqueness is clear since sy > s; and s; > sy implies sy = s7.

. Suppose we know inf{1/n : n € N} = 0, by e-characterization, this means that for any
¢ > 0, we can find an element 1/n so that 1/n < e. To prove the Archimedean property,
let M € R, if M < 0 then we are done since M < 0 < 1. Otherwise M is positive, and
taking 1/M = ¢ > 0, we can find 1/n < € = 1/M. Therefore such integer n satisfies
n > M.

(a)

(b)
(c)

Again, we will show instead that for any fixed ¢ > 0, we have sup,.p f(z) — € <
sup,cp g(z). By e-characterization, there is some z € D so that sup,.p, f(x)—e€ <
f(zo). Together with f(xy) < g(xo) < sup,cp g(x), we are done.

This follows immediately from Q4, by taking f(D) = A and g(D) = B.

Let D = [0,2], f(z) = x and g(z) = x + 1. Then clearly f(z) < g(x) for any .
But sup,¢(o 9 f(7) = 2, meanwhile inf,c(o 9 g(z) = 1.

. (The original problem contains a typo that has since been fixed, please see the corrected
version.)
(a) We will show that f(z) = sup,cp(27 +y) = 22 + 1 for any fixed v € D. The

(b)

(a)

(b)

argument is essentially the same as showing that 1 is the supremum of the interval
(0,1). One can see that for fixed zy € D, the image of h(zg,y) = 2z + y is given
by the interval (2x¢, 229 + 1) which has supremum 2z, + 1. By the same argument,
we can show that inf,cp f(x) = 1 since f(D) is just the interval (1, 3).

The argument is identical to the previous part, g(y) is equal to y since the image of h
for a fixed y is given by the interval (y, y + 2). Then sup,.p g(y) = sup(0,1) = 1.
Note that the answer coincides to that of part (a).

For fixed z € D = (0,1), clearly we can find some y € (0,1) so that y < z, like
just take y = x. Then h(x,y) = 1 must be the supremum since the function A can
only take two values. So f(r) = sup,cp h(z,y) = 1 regardless of what x is, so

inf,ep f(z) = 1.
Similarly for fixed y € (0,1), we can find z € (0, 1) so that z < y, for such pair

we get h(z,y) = 0, hence g(y) = inf,ep h(z,y) = 0 is again a constant. So
sup,ep 9(y) = 0. Note that the answer differs from that of part (a).



10. Again, we will prove the inequality by equivalently showing that sup, ¢y infzex h(x,y) —
€ < infzex sup,ey h(z,y) for any € > 0. Consider the LHS of the inequality, by e-
characterization, we can find some gy, € Y so that

sup inf h(z,y) —e < inf h(z, o).

Now clearly for any x € X, by definition of supremum,

h<xay0) S sup h(CC, Z/O)
Yyo€Y

Applying the infimum version of Q8a, we have

inf h < inf sup h(z,p).
Inf Az, yo) < Inf sup Az, yo)

Combined with the inequality above, we get the desired result.



