THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 11 solutions 1st December 2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. Since the two limits exist, given any $\epsilon > 0$, we may find M > 0 so that if $x \ge M$, we have $|f(x) L| < \epsilon/2$ and if $x \le -M$, we have $|f(x) \ell| < \epsilon/2$. Then for arbitrary $x, y \ge M$. $|f(x) f(y)| \le |f(x) L| + |f(y) L| < \epsilon$, and likewise for $x, y \le -M$, $|f(x) f(y)| \le |f(x) \ell| + |f(y) \ell| < \epsilon$.

Now we consider the closed and bounded interval I = [-2M, 2M], the restriction of f on I is continuous. Therefore, by theorem 9.4, this restriction is uniformly continuous on I. So for the $\epsilon > 0$ as in above, we can find $\delta > 0$ so that $M > \delta$, and whenever $x, y \in I$ satisfy $|x - y| < \delta$, we have $|f(x) - f(y)| < \epsilon$.

Combining the results above, for arbitrary $x, y \in \mathbb{R}$ with $|x - y| < \delta < M$. if either x, y < -M or x, y > M, we know that $|f(x) - f(y)| < \epsilon$ is guaranteed. Otherwise, say $x \in I$, then since $M < \delta$, we can ensure that $y \in (x - \delta, x + \delta) \subset [-M - M, M + M] = I$. In this case $x, y \in I$ and so we have |f(x) - f(y)| <again. This proves the uniform continuity of f on the whole \mathbb{R} .

- 2. (a) True. Suppose that we have $|f(x) f(y)| \le C_1 |x y|$ and $|g(x) g(y)| \le C_2 |x y|$ for some $C_1, C_2 \ge 0$. Note that $|(af + bg)(x) - (af + bg)(y)| \le |af(x) - af(y)| + |bg(x) - bg(y)| \le |a|C_1|x - y| + |b|C_2|x - y|$, so af + bg is again Lipschitz.
 - (b) False. A counter-example is given by f(x) = g(x) = x on \mathbb{R} , this function is clearly Lipschitz, while $(fg)(x) = x^2$ is not Lipschitz, since $|x^2 y^2| = |x + y| \cdot |x y| \ge C|x y|$ for arbitrary C > 0 if one picks x, y sufficiently large, say x > y > C/2.
 - (c) True. Suppose M > 0 is a common bound for f, g, i.e. $|f(x)| \le M$ and $|g(x)| \le M$. We have

$$\begin{aligned} |f(x)g(x) - f(y)g(y)| &\leq |f(x)g(x) - f(y)g(x)| + |f(y)g(x) - g(x)g(y)| \\ &\leq |g(x)| \cdot |f(x) - f(y)| + |f(x)| \cdot |g(x) - g(y)| \\ &\leq MC_1 |x - y| + MC_2 |x - y|. \end{aligned}$$

(d) True. If $\inf_{x \in I} f > 0$, then there is some c > 0 so that $\inf_{x \in I} f > k$, so in particular for any $x \in I$, we have 1/f(x) < 1/k. Then

$$\left| \frac{1}{f(x)} - \frac{1}{f(y)} \right| \le \left| \frac{f(y) - f(x)}{f(x)f(y)} \right| < \frac{1}{k^2} |f(x) - f(y)| \le \frac{C_1}{k^2} |x - y|.$$

(e) False. A counter-example is given by $f(x) = x^2$ on $[0, \infty)$. This is a bijective Lipschitz function on $[0, \infty)$, with inverse given by $f^{-1}(x) = \sqrt{x}$, which is non-Lipschitz. Indeed, for any C > 0, consider $x = \frac{1}{4C^2}$ and $y = \frac{1}{16C^2}$, then

$$|\sqrt{x} - \sqrt{y}| = \frac{1}{2C} - \frac{1}{4C} = \frac{1}{4C} > \frac{3}{16C} = \frac{3C}{16C^2} = C\left(\frac{1}{4C^2} - \frac{1}{16C^2}\right) = C|x - y|.$$

In other words, we have demonstrated for each C > 0, some $x, y \in [0, \infty)$ so that $|\sqrt{x} - \sqrt{y}| \le C|x - y|$ does not hold.

3. Let f be a function of bounded variation on ℝ, i.e. ||f||_{BV} = sup{∑_{k=1}ⁿ |f(x_k) - f(x_{k-1})| : x₀ < x₁ < ... < x_n} is finite. Assume on the contrary that lim_{x→∞} f(x) does not exist. We may use the Cauchy criterion for limits at infinity, i.e. lim_{x→∞} f exists if and only if for any ε > 0, there exists some M > 0 so that for x, y > M, we have |f(x) - f(y)| < ε. So if the limit does not exist, there is some ε₀ > 0 so that for any M > 0 we can find x, y > M so that |f(x) - f(y)| ≥ ε₀.

Our goal is to construct an increasing sequence (x_n) so that $\sum_{k=1}^n |f(x_k) - f(x_{k-1})|$ tends to ∞ as $n \to \infty$, this will contradict to the that f has bounded variation. By the above, we may find some $x_0 < x_1$ so that $|f(x_0) - f(x_1)| \ge \epsilon_0$. Inductively, assume that we have constructed x_{2k} and x_{2k+1} , then we take $M = x_{2k+1}$ and may find $x_{2k+3} > x_{2k+2} > x_{2k+1}$ so that $|f(x_{2k+3}) - f(x_{2k+2})| \ge \epsilon_0$. This construction gives a strictly increasing sequence (x_n) so that $|f(x_{2k+1}) - f(x_{2k})| \ge \epsilon_0$ for any $k \in \mathbb{N}$, hence

$$\sum_{i=1}^{2n} |f(x_i) - f(x_{i-1})| = \sum_{k=0}^{n-1} |f(x_{2k+1}) - f(x_{2k})| + \sum_{k=1}^{n} |f(x_{2k}) - f(x_{2k-1})|$$
$$\geq n\epsilon_0 + \sum_{k=1}^{n} |f(x_{2k}) - f(x_{2k-1})|.$$

The latter expression approaches to infinity as $n \to \infty$. This contradicts with the assumption that $||f||_{BV}$ is finite. The case for $\lim_{x\to-\infty} f$ is identical and can be obtained by replacing f(x) by f(-x).

Proposition. (*Cauchy criterion at infinity*) $\lim_{x\to\infty} f$ exists if and only if for any $\epsilon > 0$, there is some M > 0 so that for x, y > M, we have $|f(x) - f(y)| < \epsilon$.

The proof is essentially the same as in proposition 7.7.

4. We take the points at which f attains its local maxima and minima. These are the points $x_k = [(k + \frac{1}{2})\pi]^{-1}$. Note that $\sin(x_k) = (-1)^k$. Consider

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} |(-1)^k x_k - (-1)^{k-1} x_{k-1}|$$
$$= \sum_{k=1}^{n} (x_k + x_{k-1})$$
$$> \sum_{k=1}^{n} \frac{1}{(k + \frac{1}{2})\pi}$$
$$> \frac{1}{\pi} \sum_{k=1}^{n} \frac{1}{k+1} \to \infty \text{ as } n \to \infty.$$

Where in the above, we have used that the harmonic series is divergent (see example 5.4). This shows that f does not have bounded variation, as the variation can be arbitrarily large.

5. Suppose that f is differentiable with f' bounded, say |f'(x)| < C for some C > 0. Then for $\epsilon = 1 > 0$, at each $x \in I$, we may find $\delta_x > 0$ so that if $y \in (x - \delta_x, x + \delta_x) \cap I$, we have

$$f'(x) - 1 \le \frac{f(x) - f(y)}{x - y} \le f'(x) + 1.$$

In particular, we have $|f(x) - f(y)| \leq (C+1)|x - y|$ for $y \in I_x := (x - \delta_x, x + \delta_x)$. Note that however, this is not sufficient because we have to prove such inequality for all $x, y \in I$. The general case is due to compactness: if $x < y \in I$ are arbitrary, then note that $\{I_z\}_{z\in I}$ forms an open cover of the closed and bounded [x, y], therefore there is a finite subcover $\{I_{z_i}\}_{i=1}^n$ of [x, y]. So it is possible to find $x = x_0 < x_1 < \ldots < x_k = y$ so that for each consecutive pair x_j, x_{j+1} , the interval (x_j, x_{j+1}) are contained in some I_{z_i} with $x_j < z_i < x_{j+1}$. Thus we have $|f(x_{j+1}) - f(x_j)| \leq |f(x_j) - f(z_i)| + |f(x_{j+1}) - f(z_i)| \leq (C+1)|x_j - z_i| + (C+1)|x_{j+1} - z_i| = (C+1)|x_{j+1} - x_j|$. Putting everything together, we obtain

$$|f(x) - f(y)| \le \sum_{j=1}^{k} |f(x_j) - f(x_{j-1})| \le (C+1) \sum_{j=1}^{k} |x_j - x_{j-1}| = (C+1)|x - y|.$$

6. By assumption there are a < b so that f(a) = f(b) = 0. Assume on the contrary that f is continuous, so by the intermediate value theorem, on each interval (-∞, a), (a, b) and (b,∞), f must take positive or negative value. Consider the interval [a, b], if f is positive on (a, b), it must attain its maximum somewhere in (a, b), and similarly for minimum if f is negative. By replacing f with -f if necessary, we may assume that f is positive on (a, b). Let z ∈ (a, b) be a point at which f attains its maximum. By intermediate value theorem, for any f(z) > ε > 0 = f(a) = f(b), there exists some a < z' < z < z'' < b so that f(z') = f(z'') = ε. Thus f has attained small positive values twice already. By assumption, f must be negative on (-∞, a) and (b,∞).</p>

Now by assumption f must attain the maximum value twice on (a, b), say at the two points $z = z_1 < z_2$. Then for sufficiently small $\epsilon > 0$, by intermediate value theorem f must attain the value $f(z) - \epsilon$ at least three times on (a, b). More precisely, f must attain the said value at least once on each of $(a, z_1), (z_1, z_2)$ and (z_2, b) . This gives a contradiction.