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• Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

• Solutions to tutorial problems will be posted after tutorial classes.

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. Since the two limits exist, given any ϵ > 0, we may find M > 0 so that if x ≥ M , we
have |f(x) − L| < ϵ/2 and if x ≤ −M , we have |f(x) − ℓ| < ϵ/2. Then for arbitrary
x, y ≥ M . |f(x) − f(y)| ≤ |f(x) − L| + |f(y) − L| < ϵ, and likewise for x, y ≤ −M ,
|f(x)− f(y)| ≤ |f(x)− ℓ|+ |f(y)− ℓ| < ϵ.

Now we consider the closed and bounded interval I = [−2M, 2M ], the restriction of f
on I is continuous. Therefore, by theorem 9.4, this restriction is uniformly continuous on
I . So for the ϵ > 0 as in above, we can find δ > 0 so that M > δ, and whenever x, y ∈ I
satisfy |x− y| < δ, we have |f(x)− f(y)| < ϵ.

Combining the results above, for arbitrary x, y ∈ R with |x − y| < δ < M . if either
x, y < −M or x, y > M , we know that |f(x)− f(y)| < ϵ is guaranteed. Otherwise, say
x ∈ I , then since M < δ, we can ensure that y ∈ (x−δ, x+δ) ⊂ [−M−M,M+M ] = I .
In this case x, y ∈ I and so we have |f(x) − f(y)| < again. This proves the uniform
continuity of f on the whole R.

2. (a) True. Suppose that we have |f(x)−f(y)| ≤ C1|x−y| and |g(x)−g(y)| ≤ C2|x−y|
for some C1, C2 ≥ 0. Note that |(af + bg)(x)− (af + bg)(y)| ≤ |af(x)− af(y)|+
|bg(x)− bg(y)| ≤ |a|C1|x− y|+ |b|C2|x− y|, so af + bg is again Lipschitz.

(b) False. A counter-example is given by f(x) = g(x) = x on R, this function is clearly
Lipschitz, while (fg)(x) = x2 is not Lipschitz, since |x2 − y2| = |x+ y| · |x− y| ≥
C|x− y| for arbitary C > 0 if one picks x, y sufficiently large, say x > y > C/2.

(c) True. Suppose M > 0 is a common bound for f, g, i.e. |f(x)| ≤ M and |g(x)| ≤
M . We have

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(y)g(x)|+ |f(y)g(x)− g(x)g(y)|
≤ |g(x)| · |f(x)− f(y)|+ |f(x)| · |g(x)− g(y)|
≤ MC1|x− y|+MC2|x− y|.

(d) True. If infx∈I f > 0, then there is some c > 0 so that infx∈I f > k, so in particular
for any x ∈ I , we have 1/f(x) < 1/k. Then∣∣∣∣ 1
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(e) False. A counter-example is given by f(x) = x2 on [0,∞). This is a bijective
Lipschitz function on [0,∞), with inverse given by f−1(x) =

√
x, which is non-

Lipschitz. Indeed, for any C > 0, consider x = 1
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In other words, we have demonstrated for each C > 0, some x, y ∈ [0,∞) so that
|
√
x−√

y| ≤ C|x− y| does not hold.

3. Let f be a function of bounded variation on R, i.e. ||f ||BV = sup{
∑n

k=1 |f(xk) −
f(xk−1)| : x0 < x1 < ... < xn} is finite. Assume on the contrary that limx→∞ f(x)
does not exist. We may use the Cauchy criterion for limits at infinity, i.e. limx→∞ f exists
if and only if for any ϵ > 0, there exists some M > 0 so that for x, y > M , we have
|f(x) − f(y)| < ϵ. So if the limit does not exist, there is some ϵ0 > 0 so that for any
M > 0 we can find x, y > M so that |f(x)− f(y)| ≥ ϵ0.

Our goal is to construct an increasing sequence (xn) so that
∑n

k=1 |f(xk)−f(xk−1)| tends
to ∞ as n → ∞, this will contradict to the that f has bounded variation. By the above,
we may find some x0 < x1 so that |f(x0)−f(x1)| ≥ ϵ0. Inductively, assume that we have
constructed x2k and x2k+1, then we take M = x2k+1 and may find x2k+3 > x2k+2 > x2k+1

so that |f(x2k+3)−f(x2k+2)| ≥ ϵ0. This construction gives a strictly increasing sequence
(xn) so that |f(x2k+1)− f(x2k)| ≥ ϵ0 for any k ∈ N, hence
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The latter expression approaches to infinity as n → ∞. This contradicts with the assump-
tion that ||f ||BV is finite. The case for limx→−∞ f is identical and can be obtained by
replacing f(x) by f(−x).

Proposition. (Cauchy criterion at infinity) limx→∞ f exists if and only if for any ϵ > 0,
there is some M > 0 so that for x, y > M , we have |f(x)− f(y)| < ϵ.

The proof is essentially the same as in proposition 7.7.

4. We take the points at which f attains its local maxima and minima. These are the points
xk = [(k + 1
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Where in the above, we have used that the harmonic series is divergent (see example 5.4).
This shows that f does not have bounded variation, as the variation can be arbitrarily
large.

5. Suppose that f is differentiable with f ′ bounded, say |f ′(x)| < C for some C > 0. Then
for ϵ = 1 > 0, at each x ∈ I , we may find δx > 0 so that if y ∈ (x− δx, x + δx) ∩ I , we
have

f ′(x)− 1 ≤ f(x)− f(y)

x− y
≤ f ′(x) + 1.

In particular, we have |f(x) − f(y)| ≤ (C + 1)|x − y| for y ∈ Ix := (x − δx, x + δx).
Note that however, this is not sufficient because we have to prove such inequality for all
x, y ∈ I . The general case is due to compactness: if x < y ∈ I are arbitrary, then note that
{Iz}z∈I forms an open cover of the closed and bounded [x, y], therefore there is a finite
subcover {Izi}ni=1 of [x, y]. So it is possible to find x = x0 < x1 < ... < xk = y so that
for each consecutive pair xj, xj+1, the interval (xj, xj+1) are contained in some Izi with
xj < zi < xj+1. Thus we have |f(xj+1)−f(xj)| ≤ |f(xj)−f(zi)|+ |f(xj+1)−f(zi)| ≤
(C +1)|xj − zi|+ (C +1)|xj+1 − zi| = (C +1)|xj+1 − xj|. Putting everything together,
we obtain

|f(x)− f(y)| ≤
k∑

j=1

|f(xj)− f(xj−1)| ≤ (C + 1)
k∑

j=1

|xj − xj−1| = (C + 1)|x− y|.

6. By assumption there are a < b so that f(a) = f(b) = 0. Assume on the contrary that f
is continuous, so by the intermediate value theorem, on each interval (−∞, a), (a, b) and
(b,∞), f must take positive or negative value. Consider the interval [a, b], if f is positive
on (a, b), it must attain its maximum somewhere in (a, b), and similarly for minimum if
f is negative. By replacing f with −f if necessary, we may assume that f is positive on
(a, b). Let z ∈ (a, b) be a point at which f attains its maximum. By intermediate value
theorem, for any f(z) > ϵ > 0 = f(a) = f(b), there exists some a < z′ < z < z′′ < b
so that f(z′) = f(z′′) = ϵ. Thus f has attained small positive values twice already. By
assumption, f must be negative on (−∞, a) and (b,∞).

Now by assumption f must attain the maximum value twice on (a, b), say at the two
points z = z1 < z2. Then for sufficiently small ϵ > 0, by intermediate value theorem
f must attain the value f(z) − ϵ at least three times on (a, b). More precisely, f must
attain the said value at least once on each of (a, z1), (z1, z2) and (z2, b). This gives a
contradiction.


