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* Tutorial problems will be posted every Wednesday, provided there is a tutorial class on

2.

the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

Solutions to tutorial problems will be posted after tutorial classes.

If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or
in person during office hours.

. Since the two limits exist, given any € > 0, we may find M > 0 so that if z > M, we

have |f(z) — L| < ¢/2 and if x < —M, we have |f(x) — ¢| < €/2. Then for arbitrary
x,y > M. |f(x) — f(y)| < |f(x) — L| +|f(y) — L| < ¢, and likewise for z,y < —M,
|flx) = fWI < [f(@) =+ |fly) — 4 <e

Now we consider the closed and bounded interval I = [—2M, 2M|, the restriction of f
on [ is continuous. Therefore, by theorem 9.4, this restriction is uniformly continuous on
1. So for the e > 0 as in above, we can find 0 > 0 so that M > §, and whenever z,y € |
satisfy |z — y| < 0, we have | f(x) — f(y)| < e.

Combining the results above, for arbitrary z,y € R with |z —y| < § < M. if either
x,y < —M orx,y > M, we know that | f(z) — f(y)| < € is guaranteed. Otherwise, say
x € I, thensince M < §, we canensure thaty € (z—0,2+9) C [-M—M, M+M]| = 1.
In this case =,y € [ and so we have |f(z) — f(y)| < again. This proves the uniform
continuity of f on the whole R.

(a) True. Suppose that we have |f(z)— f(y)| < Cy|lx—y|and |g(z)—g(y)| < Calx—y)|
for some Cy, Cy > 0. Note that |(af +bg)(x) — (af +b9)(y)| < |af(x)—af(y)|+
lbg(z) — bg(y)| < |a|Ci]z — y| + |b|Ca|z — yl, so af + bg is again Lipschitz.

(b) False. A counter-example is given by f(x) = g(x) = x on R, this function is clearly
Lipschitz, while (fg)(x) = 2 is not Lipschitz, since |22 — y?| = |z +y| - |z — y| >
C'|z — y| for arbitary C' > 0 if one picks z, y sufficiently large, say x > y > C/2.

(c) True. Suppose M > 0 is a common bound for f, g, i.e. |f(z)| < M and |g(z)| <
M. We have

|f(x)g(x) — f(y)g(y)| < |f(x)g(z) — f(y)g(x)] + |f(y)g(x) — g(x)g(y)|
<lg(@)| - [f(x) = fF]+|f(@)] - |g(z) — g(v)|
< MCh|lx —y|+ MCs|x — y|.

(d) True. If inf,.c; f > 0, then there is some ¢ > 0 so that inf,c; f > k, so in particular
forany x € I, we have 1/f(x) < 1/k. Then
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(e) False. A counter-example is given by f(z) = x? on [0,00). This is a bijective
)

Lipschitz function on [0, oc), with inverse given by f~!(z) = \/5 which is non-

Lipschitz. Indeed, for any C' > 0, consider # = 15 and y = -, then
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In other words, we have demonstrated for each C' > 0, some z,y € [0, 00) so that
vz — /yl £ C|z — y| does not hold.

3. Let f be a function of bounded variation on R, i.e. ||f|lpy = sup{d> ;_, |f(zx) —
flzg—1)| + ®o < 1 < ... < x,} is finite. Assume on the contrary that lim, ., f(z)
does not exist. We may use the Cauchy criterion for limits at infinity, i.e. lim,_, ., f exists
if and only if for any € > 0, there exists some M > 0 so that for z,y > M, we have
|f(z) — f(y)] < e. So if the limit does not exist, there is some €, > 0 so that for any
M > 0 wecan find x,y > M so that |f(z) — f(y)| > eo.

Our goal is to construct an increasing sequence (z,,) sothat > ', | f(zy) — f(xx_1)| tends
to oo as n — o0, this will contradict to the that f has bounded variation. By the above,
we may find some o < 1 so that | f(z9)— f(x1)| > €. Inductively, assume that we have
constructed xo, and xo,41, then we take M = w911 and may find xop13 > Togro > Topt1
so that | f(waxs3) — f(2ars2)| > €. This construction gives a strictly increasing sequence
(x,,) so that | f(zor41) — f(2ar)| > € for any k € N, hence
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The latter expression approaches to infinity as n — oco. This contradicts with the assump-
tion that || f||gv is finite. The case for lim, , ., f is identical and can be obtained by

replacing f(x) by f(—x).
Proposition. (Cauchy criterion at infinity) lim,_, . f exists if and only if for any € > 0,
there is some M > 0 so that for z,y > M, we have | f(z) — f(y)| <e.

The proof is essentially the same as in proposition 7.7.

4. We take the points at which f attains its local maxima and minima. These are the points
z, = [(k + 1)m]~'. Note that sin(z;) = (—1)*. Consider

Z |f(zr) — flon—a)| = Z\ Yrap — (=) |
= Z($k + xk_l)
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Where in the above, we have used that the harmonic series is divergent (see example 5.4).
This shows that f does not have bounded variation, as the variation can be arbitrarily
large.

. Suppose that f is differentiable with f’ bounded, say | f'(x)| < C for some C' > 0. Then
fore =1 > 0, ateach x € I, we may find §, > O so thatify € (x — .,z + 0,) N I, we

have
r—Yy

In particular, we have |f(z) — f(y)| < (C + 1)|x —y|fory € I, := (& — 0z, + Jy).
Note that however, this is not sufficient because we have to prove such inequality for all
x,y € I. The general case is due to compactness: if x < y € [ are arbitrary, then note that
{I.}.cr forms an open cover of the closed and bounded [z, y], therefore there is a finite
subcover {1, }, of [x,y]. So it is possible to find x = 2y < 1 < ... < x} = y so that
for each consecutive pair z;, 41, the interval (z;, ;1) are contained in some /., with
xj < z; < 1. Thus we have [ f (wj41) — f ()] < [f(2;) = [ (20) [+ | f (zj0) — f(20)] <
(CH+1)|xj— 2|+ (C+1)|zj41 — 2| = (C+1)|xj11 — ;| Putting everything together,
we obtain
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. By assumption there are a < b so that f(a) = f(b) = 0. Assume on the contrary that f
is continuous, so by the intermediate value theorem, on each interval (—oo, a), (a,b) and
(b, 00), f must take positive or negative value. Consider the interval [a, b], if f is positive
on (a,b), it must attain its maximum somewhere in (a, b), and similarly for minimum if
f is negative. By replacing f with — f if necessary, we may assume that f is positive on
(a,b). Let z € (a,b) be a point at which f attains its maximum. By intermediate value
theorem, for any f(z) > ¢ > 0 = f(a) = f(b), there exists some a < 2/ < z < 2’ < b
so that f(z') = f(2”) = e. Thus f has attained small positive values twice already. By
assumption, f must be negative on (—oo, a) and (b, 00).

Now by assumption f must attain the maximum value twice on (a,b), say at the two
points z = 21 < z9. Then for sufficiently small ¢ > 0, by intermediate value theorem
f must attain the value f(z) — € at least three times on (a,b). More precisely, f must
attain the said value at least once on each of (a, z1), (21, 22) and (29,b). This gives a
contradiction.



