THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 10 solutions 17th November 2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. (a) It is not uniformly continuous. Let $\epsilon = 1$, then for any $\delta > 0$, consider an $x \ge 0$ to be fixed later, and $y = x + \delta/2$, so that $|x y| < \delta$. Note that

$$|(x+\delta/2)^{n} - x^{n}| = \sum_{i=0}^{n-1} \binom{n}{i} \left(\frac{\delta}{2}\right)^{n-i} x^{i} \ge \frac{1}{2}n\delta x.$$

Now by Archimedean property, no matter what $\delta > 0$ is, we can find x > 0 large enough so that $\frac{1}{2}n\delta x \ge 1$, therefore we have shown $|f(x) - f(y)| \ge \epsilon$. f cannot be uniformly continuous.

(b) It is uniformly continuous, for $n \ge 1$. We will first prove the inequality $|x^{1/n} - y^{1/n}| \le |x - y|^{1/n}$ for any $x, y \in [0, \infty)$. If x = y, then the inequality trivially holds, otherwise suppose that x > y, then $x = (x^{1/n} - y^{1/n} + y^{1/n})^n \ge (x^{1/n} - y^{1/n})^n + y$. Rearranging this and taking n^{th} -root (which preserves inequality as it is strictly increasing): $(x - y)^{1/n} \ge x^{1/n} - y^{1/n}$, since both sides are positive, this implies the inequality with absolute value.

Now it follows that f is uniformly continuous. Let $\epsilon > 0$, pick $\delta = \epsilon^n > 0$, then for $|x - y| < \delta$, we have

$$|x^{\frac{1}{n}} - y^{\frac{1}{n}}| \le |x - y|^{\frac{1}{n}} < \delta^{\frac{1}{n}} = \epsilon.$$

Remark. In general, a function f satisfying $|f(x) - f(y)| \le C|x - y|^{\alpha}$ for some constant $\alpha > 0$ is called a Hölder continuous function, the special case when $\alpha = 1$ is the Lipschitz condition.

2. Let $\epsilon = 1$, by uniform continuity, there is some $\delta > 0$ so that for any $x, y \in (a, b)$ with $|x - y| < \delta$, we have |f(x) - f(y)| < 1. Since (a, b) is bounded, we may cover (a, b) by a finite number of open intervals (a_i, b_i) for i = 1, ..., n, so that $(a_i, b_i) \cap (a, b) \neq \emptyset$, $b_i = a_i + \delta$ and $a_i < a_{i+1} < b_i$ for any i. Now fix an $x_1 \in (a_1, b_1)$, for any $y \in (a, b)$, if $y \in (a_1, b_1)$, then $|x_1 - y| < b_1 - a_1 = \delta$, so $|f(y)| \leq |f(x_1) - f(y)| + |f(x_1)| < 1 + |f(x_1)|$. Otherwise $y \in (a_j, b_j)$ and one can find $x_1 < x_2 < ... < x_j = y$ so that

 $x_i \in (a_i, b_i) \cap (a_{i-1}, b_{i-1})$ for $2 \le i \le j-1$. Then by construction, since both x_i and x_{i-1} lie in (a_{i-1}, b_{i-1}) , they are within δ -distance from each other, hence

$$\begin{aligned} |f(y)| &\leq |f(y) - f(x_1)| + |f(x_1)| \\ &\leq \left| \sum_{i=2}^{j} (f(x_i) - f(x_{i-1})) \right| + |f(x_1)| \\ &\leq \sum_{i=2}^{j} |f(x_i) - f(x_{i-1})| + |f(x_1)| \\ &< j - 1 + |f(x_1)| \\ &\leq n - 1 + |f(x_1)| =: M. \end{aligned}$$

Since any $y \in (a, b)$ lies in some (a_i, b_i) , this shows that f is bounded by the constant M.

Yes, first note that the composition of two uniformly continuous function is again uniformly continuous. And by Q1b, we know that x → √x is uniformly continuous on [0,∞). Therefore, we immediately obtain the uniform continuity of √f² = |f|.

To show that f itself is uniformly continuous, start with any $\epsilon > 0$, there is some $\delta > 0$ so that $|x - y| < \delta$ implies $||f(x)| - |f(y)|| < \epsilon/2$. Now for the same δ , we wish to estimate |f(x) - f(y)| for $|x - y| < \delta$. If f(x) or f(y) is 0, or if they have the same sign, then $|f(x) - f(y)| = ||f(x)| - |f(y)|| < \epsilon/2$. Otherwise, f(x) and f(y) differs in signs, and so by intermediate value theorem there exists some z between x, y so that f(z) = 0. Now |x - z| and |y - z| are both smaller than δ , so we have

$$\begin{aligned} |f(x) - f(y)| &\leq |f(x) - f(z)| + |f(y) - f(z)| \\ &= ||f(x)| - |f(z)|| + ||f(y)| - |f(z)|| \\ &< \epsilon/2 + \epsilon/2 = \epsilon. \end{aligned}$$

4. If f, g are bounded, uniformly continuous, then say $|f(x)| < M_1$ and $|g(x)| < M_2$. Then give $\epsilon > 0$, there are $\delta_1, \delta_2 > 0$ so that if $|x - y| < \delta_1$ (resp. δ_2), then $|f(x) - f(y)| < \epsilon/(2M_2)$ (resp. $g(x) - g(y)| < \epsilon/(2M_1)$). Then for $\delta = \min\{\delta_1, \delta_2\}$, for any x, y so that $|x - y| < \delta$, we have

$$\begin{aligned} |f(x)g(x) - f(y)g(y)| &= |f(x)g(x) - f(y)g(x) + f(y)g(x) - f(y)g(y)| \\ &\leq |f(x)g(x) - f(y)g(x)| + |f(y)g(x) - f(y)g(y)| \\ &\leq |g(x)| \cdot |f(x) - f(y)| + |f(y)| \cdot |g(x) - g(y)| \\ &< M_2 \cdot \frac{\epsilon}{2M_2} + M_1 \cdot \frac{\epsilon}{2M_1} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Boundedness cannot be dropped, e.g. as we have seen x^2 is not uniformly continuous on \mathbb{R} despite x is.

5. Let f be a continuous periodic function with period p > 0, then the restriction of f onto [0, 2p] is uniformly continuous because [0, 2p] is compact. So for arbitrary $\epsilon > 0$, there is a $\delta > 0$ so that whenever $x, y \in [0, 2p]$ and $|x - y| < \delta$, we have $|f(x) - f(y)| < \epsilon$.

Now we take $\delta' = \min\{p, \delta\}$, we consider now arbitrary $x \leq y \in \mathbb{R}$ with $|x - y| < \delta$. Since $\bigcup_{n \in \mathbb{Z}} [n, (n + 1)p] = \mathbb{R}$, there exists some $k \in \mathbb{Z}$ so that $x \in [np, (n + 1)p]$, in order words $x - np \in [0, p]$. Then it follows that $y - np \in [x, x + \delta) \subset [0, 2p]$. Now $|y - np - (x - np)| = |x - y| < \delta$, so by uniform continuity of f on [0, 2p], we have $|f(x - np) - f(y - np)| < \epsilon$, by periodicity this implies $|f(x) - f(y)| < \epsilon$.

- 6. (a) f is uniformly continuous if and only if for all ε > 0, there exists δ such that for all |x y| < δ, we have |f(x) f(y)| < ε.
 This is equivalent to: for all ε > 0, there exists δ > 0 such that ω_f(δ) = sup{|f(x) f(y)| : x, y ∈ A, |x y| < δ} < ε.
 Notice that ω_f(δ) is monotone increasing, as the subset we are taking supremum over is monotone increasing as δ increases. Therefore, the latter is equivalent to requiring ω_f(δ') < ε for all 0 < δ' < δ, by suitably replacing ε if necessary. This condition is equivalent to lim_{δ→0} ω_f(δ) = 0.
 - (b) $\omega_f(0) = 0$ always holds for all any function f, as we are taking supremum over a singleton $\{0\}$. For any $\delta > 0$, we will prove that $\omega_f(\delta) = 2$. This is due to Archimedean property, there always exists $N \in \mathbb{N}$ large enough so that $\frac{1}{(2N+1/2)\pi} - \frac{1}{(2N+1+1/2)\pi} < \delta$. But then

$$\sin\left(\frac{1}{(2N+1/2)\pi}\right) - \sin\left(\frac{1}{(2N+1+1/2)\pi}\right) = 1 - (-1) = 2.$$

By triangle inequality, $\sup\{|f(x) - f(y)| : |x - y| < \delta\} \le 2\sup\{|f(x)| : x \in (0,1)\} = 2$, we see that the supremum is achieved. So $\omega_f(\delta) = 2$.

Now $\lim_{\delta \to 0} \omega_f(\delta) \neq 0$, we conclude that $f = \sin(1/x)$ is not uniformly continuous.

(c) Let f be a uniformly continuous function on \mathbb{R} , we will prove that ω_f is subadditive, i.e. $\omega_f(s+t) \leq \omega_f(s) + \omega_f(t)$. Consider the following sets

$$\begin{split} &A = \{ |f(x) - f(y)| : |x - y| < s + t \}. \\ &B = \{ |f(x) - f(u)| + |f(u) - f(y)| : |x - u| < s, |y - u| < t \}. \\ &C = \{ |f(x) - f(u)| + |f(v) - f(y)| : |x - u| < s, |y - v| < t \}. \end{split}$$

Then we have $A \subset B \subset C$, where the first inclusion is due to triangle inequality, and the second inclusion is seen by specializing v = u. Therefore $\sup A \leq \sup B \leq$ $\sup C$, but then $\sup A = \omega_f(s+t)$ and $\sup C = \omega_f(s) + \omega_f(t)$ (recall that supremum of sum of two sets is the sum of their supremums). Therefore we have proven the subadditivity of ω_f .

Now take s = a - b and t = b for some $a \ge b$, then $\omega_f(s + t) = \omega_f(a) \le \omega_f(a - b) + \omega_f(b)$, and so $|\omega_f(a) - \omega_f(b)| < \omega(|a - b|)$. This implies that ω_f is uniformly continuous, since given any $\epsilon > 0$, continuity at 0 implies that for any $\epsilon > 0$, there exists $\delta > 0$ so that $0 < \delta' < \delta$ implies $\omega_f(\delta') < \epsilon$. Now take $\delta/2 > 0$, if $|a - b| < \delta/2$, we have $|\omega_f(a) - \omega_f(b)| < \omega_f(|a - b|) < \omega_f(\delta/2) < \epsilon$.

Remark. Note that in the above, we only used (i) ω_f continuous at 0, (ii) ω_f is subadditive and (iii) ω_f is strictly increasing. By the above proof, any function satisfying these three properties would be uniformly continuous.

7. (⇒) Suppose that f is uniformly continuous, then f restricted to each of [-1, 0) and (0, 1] is uniformly continuous as well. By continuous extension theorem, this holds if and only if f|_{[0,1)} (resp. f|_{(-1,0]}) can be extended to the endpoints so that f₁ = f|_[0,1] (resp. f₂ = f|_[-1,0]) is continuous. Recall that such extensions must satisfies f₁(0) = lim_{x→0+} f(x) and f₂(0) = lim_{x→0-} f(x). So the one-sided limits exist. Suppose that they differ, then we can find a sequence (x_n) in (0, 1] so that lim x_n = 0; and a sequence (y_n) in [-1, 0) so that lim y_n = 0. Then we know lim f(x_n) ≠ lim f(y_n), it follows that for ε chosen to be say |f₁(0) - f₂(0)|/2, for any δ > 0, then there exists some N ∈ N so that for N large enough, |x_n - y_n| < δ and |f(x_n) - f(y_n)| ≥ ε for n ≥ N. This contradicts with uniform continuity of f. So f₁(0) = f₂(0) must hold.

(\Leftarrow) Suppose that f satisfies $\lim_{x\to 0^+} f = \lim_{x\to 0^-} f$, then f can be extended to a continuous function on [-1, 1]. Since [-1, 1] is compact, it follows that the extension of f to [-1, 1] is uniformly continuous, whose restriction onto $[-1, 0) \cup (0, 1]$, i.e. f itself, is also clearly uniformly continuous.

8. Take $f(x) = \sin(\pi x)$, then f(n) = 0 for any $\in \mathbb{Z}$, so $\lim f(n) = 0$. But $\lim_{x\to\infty} f(x) \neq 0$ since it is periodic.

Now suppose further that $g(x) = f(x^2)$ is uniformly continuous. For any $\epsilon > 0$, by assumption there is some $N_1 \in \mathbb{N}$ so that $|f(n)| = |g(\sqrt{n})| < \epsilon/2$ for any $n \ge N_1$. Now by uniform continuity, there is also some $\delta > 0$ so that whenever $|x - y| < \delta$, we have $|g(x) - g(y)| < \epsilon/2$. Since $\lim(\sqrt{n+1} - \sqrt{n}) = 0$, there exists N_2 so that for $n \ge N_2$, we can guarantee $\sqrt{n+1} - \sqrt{n} < \delta$. Now we take $N = \max\{N_1, N_2\}$, and any $x \ge N > 0$, we have $\sqrt{x} \in [\sqrt{n}, \sqrt{n+1})$ for some $n \ge N$. Then by construction, $|\sqrt{x} - \sqrt{n}| < \delta$, we conclude

$$\begin{split} |f(x)| &= |g(\sqrt{x})| \leq |g(\sqrt{x}) - g(\sqrt{n})| + |g(\sqrt{n})| \\ &< \epsilon/2 + \epsilon/2 = \epsilon. \end{split}$$