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* Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

* Solutions to tutorial problems will be posted after tutorial classes.

* If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or
in person during office hours.

1. (a) Itis not uniformly continuous. Let ¢ = 1, then for any § > 0, consider an = > 0 to
be fixed later, and y = = + 0/2, so that |z — y| < J. Note that
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Now by Archimedean property, no matter what 6 > 0 is, we can find z > 0 large
enough so that $ndz > 1, therefore we have shown |f(z) — f(y)| > €. f cannot be
uniformly continuous.

(b) It is uniformly continuous, for n > 1. We will first prove the inequality |2'/" —

y'/" < |z — y|V" for any x,y € [0,00). If x = y, then the inequality trivially
holds, otherwise suppose that z > y, then z = (2'/™ — y'/m 4 yt/m)n > (/7 —
y'/™)" 4 y. Rearranging this and taking n™-root (which preserves inequality as it
is strictly increasing): (z — y)'/™ > 2'/" — y/", since both sides are positive, this
implies the inequality with absolute value.

Now it follows that f is uniformly continuous. Let ¢ > 0, pick 6 = €™ > 0, then for
|z —y| < 0, we have

o —yn| <o —yln <67 =

Remark. In general, a function f satisfying |f(z) — f(y)| < Clx — y|* for some
constant o > 0 is called a Holder continuous function, the special case when o = 1
is the Lipschitz condition.

2. Let € = 1, by uniform continuity, there is some d > 0 so that for any z,y € (a,b) with
|z —y| < J, we have |f(z) — f(y)| < 1. Since (a,b) is bounded, we may cover (a, b)
by a finite number of open intervals (a;, b;) for i = 1,...,n, so that (a;, b;) N (a,b) # 0,
b; = a; + 6 and a; < a;41 < b; for any i. Now fix an x; € (ay,by), for any y € (a,b),
if y € (a1,by), then |1 — y| < by —ar = 6, 50 |F()] < |F(@1) — F)] + |f(1)] <
1+ |f(z1)|. Otherwise y € (a;,b;) and one can find z; < 22 < ... < x; = y so that



x; € (a;,b;) N (a;_1,b;_1) for 2 < i < j — 1. Then by construction, since both x; and
x;—1 liein (a;_1, b;_1), they are within J-distance from each other, hence

|f) < 1f(y) = flz)] + | f(21)]
(f(zi) = f(zic1))

< Z |f(xi) = flzioa)| + [ f(21)]
<j—1+][f(z1)]
<n—1+|f(x1)| =M

IN

+ [ f(21)]

Since any y € (a, b) lies in some (a;, b;), this shows that f is bounded by the constant M.

. Yes, first note that the composition of two uniformly continuous function is again uni-
formly continuous. And by Q1b, we know that x +— +/z is uniformly continuous on
[0, 00). Therefore, we immediately obtain the uniform continuity of /2 = | f|.

To show that f itself is uniformly continuous, start with any € > 0, there is some ¢ > 0 so
that |z — y| < & implies ||f(x)| — | f(y)|| < €/2. Now for the same §, we wish to estimate
|f(z) — f(y)| for |z —y| < 6. If f(x) or f(y) is 0, or if they have the same sign, then
|f(z) = f()] = If(@)| = |f(y)|| < e/2. Otherwise, f(x) and f(y) differs in signs, and
so by intermediate value theorem there exists some z between z, y so that f(z) = 0. Now
|z — z| and |y — z| are both smaller than 9, so we have

[f(@) = f(y)l < |f(2) = F) + [f(y) — F(2)]
= [[f @) = [fEI+ W] = [f R
<€/2+¢€/2=c¢.

. If f, g are bounded, uniformly continuous, then say |f(z)| < M; and |g(z)| < Ms. Then
give € > 0, there are d1,d> > 0 so that if |z — y| < &; (resp. J2), then |f(x) — f(y)| <
€/(2Ms) (resp. g(x) — g(y)| < €¢/(2M;). Then for 6 = min{d;, 2}, for any x,y so that
|z —y| < J, we have

|f(@)g(z) = f(y)gW)| = [f(z)g(x) — f(y)g(z) + f(y)g(x) — f(y)g(y)]
< [f(z)g(z) — fy)g(x)| + | f(y)g(x) — f(y)g(y)]
<lg(@)||f(x) - f(y)|+|f(y)! l9(z) — g(y)|
<My gip Mgy =gy e

Boundedness cannot be dropped, e.g. as we have seen x” is not uniformly continuous on
R despite x is.

. Let f be a continuous periodic function with period p > 0, then the restriction of f onto
[0, 2p] is uniformly continuous because [0, 2p| is compact. So for arbitrary ¢ > 0, there is
a 0 > 0 so that whenever x,y € [0,2p] and |z — y| < 6, we have |f(z) — f(y)| < e.



6.

Now we take 0’ = min{p, 4}, we consider now arbitrary x < y € R with |z — y| < .
Since J,,.,[n, (n + 1)p] = R, there exists some k € Z so that z € [np, (n + 1)p], in
order words x — np € [0,p]. Then it follows that y — np € [z,z + §) C [0,2p]. Now
ly — np — (x — np)| = |r — y| < 4, so by uniform continuity of f on [0, 2p], we have
|f(z —np) — f(y — np)| < ¢, by periodicity this implies | f(z) — f(y)| < e.

(a) f is uniformly continuous if and only if for all € > 0, there exists ¢ such that for all
|z —y| < 0, wehave | f(z) — f(y)| <e.
This is equivalent to: for all € > 0, there exists 6 > 0 such that w;(d) = sup{|f(z)—
fWl:zyeAlr—yl<d} <e
Notice that w(d) is monotone increasing, as the subset we are taking supremum
over is monotone increasing as ¢ increases. Therefore, the latter is equivalent to
requiring ws(d’) < e forall 0 < &' < 6, by suitably replacing ¢ if necessary. This
condition is equivalent to lims_,o ws(d) = 0.

(b) ws(0) = 0 always holds for all any function f, as we are taking supremum over
a singleton {0}. For any 6 > 0, we will prove that w¢(6) = 2. This is due to
Archimedean property, there always exists /N € N large enough so that i

1
2N+1/2)w
m < 6. But then

(v ramr) o (averrms) =1 =2

By triangle inequality, sup{|f(z) — f(y)| : |z — y| < 6} < 2sup{|f(x)| : = €
(0,1)} = 2, we see that the supremum is achieved. So w(J) = 2.

Now lims_,o ws(d) # 0, we conclude that f = sin(1/z) is not uniformly continuous.

(c) Let f be a uniformly continuous function on R, we will prove that w/ is subadditive,
ie. wr(s+1t) <wy(s)+ wys(t). Consider the following sets

A=A{lf(x) = fW)l: [z —yl <s+1}.
B =A{f(z) = flu)l + [f(w) = f@W)] : |z —u| <s, |y —u <t}
C=A{lf(z) = fu)| +[f(0) = fW)]: |z —ul <s, ]y —v] <t}

Then we have A C B C C, where the first inclusion is due to triangle inequality,
and the second inclusion is seen by specializing v = u. Therefore sup A < sup B <
sup C, but then sup A = wy(s+t) and sup C' = wy(s)+wy(t) (recall that supremum
of sum of two sets is the sum of their supremums). Therefore we have proven the
subadditivity of wy.

Now take s = a — b and ¢ = b for some a > b, then wy(s +t) = wy(a) <
wr(a — b) + ws(b), and so |wg(a) — ws(b)] < w(|a — b]). This implies that wy is
uniformly continuous, since given any € > 0, continuity at 0 implies that for any
e > 0, there exists 0 > 0 so that 0 < ¢’ < ¢ implies wy(¢') < e. Now take §/2 > 0,
if [a — b] < §/2, we have |w(a) — ws(b)] < wy(la—b|) <wp(6/2) <e.

Remark. Note that in the above, we only used (i) w; continuous at 0, (ii) wy is subadditive
and (iii) wy is strictly increasing. By the above proof, any function satisfying these three
properties would be uniformly continuous.



7. (=) Suppose that f is uniformly continuous, then f restricted to each of [—1,0) and (0, 1]
is uniformly continuous as well. By continuous extension theorem, this holds if and only
if fljo,1) (resp. f|(-1,09) can be extended to the endpoints so that f; = f| 1 (resp. fo =
fli=1,0)) is continuous. Recall that such extensions must satisfies f1(0) = lim,_,o+ f(2)
and f5(0) = lim, ,o- f(x). So the one-sided limits exist. Suppose that they differ, then
we can find a sequence (z,,) in (0, 1] so that lim z,, = 0; and a sequence (y,,) in [—1,0)
so that lim y,, = 0. Then we know lim f(z,) # lim f(y,), it follows that for € chosen to
be say | f1(0) — f2(0)|/2, for any § > 0, then there exists some N € N so that for N large
enough, |z, —y,| < dand |f(x,) — f(y,)| > € forn > N. This contradicts with uniform
continuity of f. So f1(0) = f2(0) must hold.

(<) Suppose that f satisfies lim, o+ f = lim, ,o- f, then f can be extended to a con-
tinuous function on [—1, 1]. Since [—1, 1] is compact, it follows that the extension of f
to [—1, 1] is uniformly continuous, whose restriction onto [—1,0) U (0, 1], i.e. f itself, is
also clearly uniformly continuous.

8. Take f(x) = sin(nz), then f(n) = 0 forany € Z, solim f(n) = 0. Butlim,_,, f(z) #0
since it is periodic.
Now suppose further that g(z) = f(2?) is uniformly continuous. For any ¢ > 0, by
assumption there is some N; € N so that |f(n)| = |g(v/n)| < €/2 for any n > Nj.
Now by uniform continuity, there is also some § > 0 so that whenever |z — y| < J, we
have |g(z) — g(y)| < €¢/2. Since lim(y/n + 1 — y/n) = 0, there exists N, so that for
n > N, we can guarantee v/n + 1 — /n < 0. Now we take N = max{ Ny, N>}, and
any x > N > 0, we have \/x € [\/n,v/n + 1) for some n > N. Then by construction,
|v/x — \/n| < d, we conclude

|f(@)] = lg(Vz)| < lg(Va) — g(v/n)| + |g(v/n)]

<€/2+€/2=c¢



