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• Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

• Solutions to tutorial problems will be posted after tutorial classes.

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. (a) It is not uniformly continuous. Let ϵ = 1, then for any δ > 0, consider an x ≥ 0 to
be fixed later, and y = x+ δ/2, so that |x− y| < δ. Note that

|(x+ δ/2)n − xn| =
n−1∑
i=0
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xi ≥ 1

2
nδx.

Now by Archimedean property, no matter what δ > 0 is, we can find x > 0 large
enough so that 1

2
nδx ≥ 1, therefore we have shown |f(x)− f(y)| ≥ ϵ. f cannot be

uniformly continuous.

(b) It is uniformly continuous, for n ≥ 1. We will first prove the inequality |x1/n −
y1/n| ≤ |x − y|1/n for any x, y ∈ [0,∞). If x = y, then the inequality trivially
holds, otherwise suppose that x > y, then x = (x1/n − y1/n + y1/n)n ≥ (x1/n −
y1/n)n + y. Rearranging this and taking nth-root (which preserves inequality as it
is strictly increasing): (x − y)1/n ≥ x1/n − y1/n, since both sides are positive, this
implies the inequality with absolute value.
Now it follows that f is uniformly continuous. Let ϵ > 0, pick δ = ϵn > 0, then for
|x− y| < δ, we have
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1
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n | ≤ |x− y|

1
n < δ

1
n = ϵ.

Remark. In general, a function f satisfying |f(x) − f(y)| ≤ C|x − y|α for some
constant α > 0 is called a Hölder continuous function, the special case when α = 1
is the Lipschitz condition.

2. Let ϵ = 1, by uniform continuity, there is some δ > 0 so that for any x, y ∈ (a, b) with
|x − y| < δ, we have |f(x) − f(y)| < 1. Since (a, b) is bounded, we may cover (a, b)
by a finite number of open intervals (ai, bi) for i = 1, ..., n, so that (ai, bi) ∩ (a, b) ̸= ∅,
bi = ai + δ and ai < ai+1 < bi for any i. Now fix an x1 ∈ (a1, b1), for any y ∈ (a, b),
if y ∈ (a1, b1), then |x1 − y| < b1 − a1 = δ, so |f(y)| ≤ |f(x1) − f(y)| + |f(x1)| <
1 + |f(x1)|. Otherwise y ∈ (aj, bj) and one can find x1 < x2 < ... < xj = y so that



xi ∈ (ai, bi) ∩ (ai−1, bi−1) for 2 ≤ i ≤ j − 1. Then by construction, since both xi and
xi−1 lie in (ai−1, bi−1), they are within δ-distance from each other, hence

|f(y)| ≤ |f(y)− f(x1)|+ |f(x1)|

≤

∣∣∣∣∣
j∑

i=2

(f(xi)− f(xi−1))

∣∣∣∣∣+ |f(x1)|

≤
j∑

i=2

|f(xi)− f(xi−1)|+ |f(x1)|

< j − 1 + |f(x1)|
≤ n− 1 + |f(x1)| =: M.

Since any y ∈ (a, b) lies in some (aj, bj), this shows that f is bounded by the constant M .

3. Yes, first note that the composition of two uniformly continuous function is again uni-
formly continuous. And by Q1b, we know that x 7→

√
x is uniformly continuous on

[0,∞). Therefore, we immediately obtain the uniform continuity of
√

f 2 = |f |.
To show that f itself is uniformly continuous, start with any ϵ > 0, there is some δ > 0 so
that |x− y| < δ implies ||f(x)|− |f(y)|| < ϵ/2. Now for the same δ, we wish to estimate
|f(x) − f(y)| for |x − y| < δ. If f(x) or f(y) is 0, or if they have the same sign, then
|f(x)− f(y)| = ||f(x)| − |f(y)|| < ϵ/2. Otherwise, f(x) and f(y) differs in signs, and
so by intermediate value theorem there exists some z between x, y so that f(z) = 0. Now
|x− z| and |y − z| are both smaller than δ, so we have

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(y)− f(z)|
= ||f(x)| − |f(z)||+ ||f(y)| − |f(z)||
< ϵ/2 + ϵ/2 = ϵ.

4. If f, g are bounded, uniformly continuous, then say |f(x)| < M1 and |g(x)| < M2. Then
give ϵ > 0, there are δ1, δ2 > 0 so that if |x − y| < δ1 (resp. δ2), then |f(x) − f(y)| <
ϵ/(2M2) (resp. g(x) − g(y)| < ϵ/(2M1). Then for δ = min{δ1, δ2}, for any x, y so that
|x− y| < δ, we have

|f(x)g(x)− f(y)g(y)| = |f(x)g(x)− f(y)g(x) + f(y)g(x)− f(y)g(y)|
≤ |f(x)g(x)− f(y)g(x)|+ |f(y)g(x)− f(y)g(y)|
≤ |g(x)| · |f(x)− f(y)|+ |f(y)| · |g(x)− g(y)|

< M2 ·
ϵ

2M2

+M1 ·
ϵ

2M1

=
ϵ

2
+

ϵ

2
= ϵ.

Boundedness cannot be dropped, e.g. as we have seen x2 is not uniformly continuous on
R despite x is.

5. Let f be a continuous periodic function with period p > 0, then the restriction of f onto
[0, 2p] is uniformly continuous because [0, 2p] is compact. So for arbitrary ϵ > 0, there is
a δ > 0 so that whenever x, y ∈ [0, 2p] and |x− y| < δ, we have |f(x)− f(y)| < ϵ.



Now we take δ′ = min{p, δ}, we consider now arbitrary x ≤ y ∈ R with |x − y| < δ.
Since

⋃
n∈Z[n, (n + 1)p] = R, there exists some k ∈ Z so that x ∈ [np, (n + 1)p], in

order words x − np ∈ [0, p]. Then it follows that y − np ∈ [x, x + δ) ⊂ [0, 2p]. Now
|y − np − (x − np)| = |x − y| < δ, so by uniform continuity of f on [0, 2p], we have
|f(x− np)− f(y − np)| < ϵ, by periodicity this implies |f(x)− f(y)| < ϵ.

6. (a) f is uniformly continuous if and only if for all ϵ > 0, there exists δ such that for all
|x− y| < δ, we have |f(x)− f(y)| < ϵ.
This is equivalent to: for all ϵ > 0, there exists δ > 0 such that ωf (δ) = sup{|f(x)−
f(y)| : x, y ∈ A, |x− y| < δ} < ϵ.
Notice that ωf (δ) is monotone increasing, as the subset we are taking supremum
over is monotone increasing as δ increases. Therefore, the latter is equivalent to
requiring ωf (δ

′) < ϵ for all 0 < δ′ < δ, by suitably replacing ϵ if necessary. This
condition is equivalent to limδ→0 ωf (δ) = 0.

(b) ωf (0) = 0 always holds for all any function f , as we are taking supremum over
a singleton {0}. For any δ > 0, we will prove that ωf (δ) = 2. This is due to
Archimedean property, there always exists N ∈ N large enough so that 1

(2N+1/2)π
−

1
(2N+1+1/2)π

< δ. But then

sin

(
1

(2N + 1/2)π

)
− sin

(
1

(2N + 1 + 1/2)π

)
= 1− (−1) = 2.

By triangle inequality, sup{|f(x) − f(y)| : |x − y| < δ} ≤ 2 sup{|f(x)| : x ∈
(0, 1)} = 2, we see that the supremum is achieved. So ωf (δ) = 2.
Now limδ→0 ωf (δ) ̸= 0, we conclude that f = sin(1/x) is not uniformly continuous.

(c) Let f be a uniformly continuous function on R, we will prove that ωf is subadditive,
i.e. ωf (s+ t) ≤ ωf (s) + ωf (t). Consider the following sets

A = {|f(x)− f(y)| : |x− y| < s+ t}.
B = {|f(x)− f(u)|+ |f(u)− f(y)| : |x− u| < s, |y − u| < t}.
C = {|f(x)− f(u)|+ |f(v)− f(y)| : |x− u| < s, |y − v| < t}.

Then we have A ⊂ B ⊂ C, where the first inclusion is due to triangle inequality,
and the second inclusion is seen by specializing v = u. Therefore supA ≤ supB ≤
supC, but then supA = ωf (s+t) and supC = ωf (s)+ωf (t) (recall that supremum
of sum of two sets is the sum of their supremums). Therefore we have proven the
subadditivity of ωf .
Now take s = a − b and t = b for some a ≥ b, then ωf (s + t) = ωf (a) ≤
ωf (a − b) + ωf (b), and so |ωf (a) − ωf (b)| < ω(|a − b|). This implies that ωf is
uniformly continuous, since given any ϵ > 0, continuity at 0 implies that for any
ϵ > 0, there exists δ > 0 so that 0 < δ′ < δ implies ωf (δ

′) < ϵ. Now take δ/2 > 0,
if |a− b| < δ/2, we have |ωf (a)− ωf (b)| < ωf (|a− b|) < ωf (δ/2) < ϵ.

Remark. Note that in the above, we only used (i) ωf continuous at 0, (ii) ωf is subadditive
and (iii) ωf is strictly increasing. By the above proof, any function satisfying these three
properties would be uniformly continuous.



7. (⇒) Suppose that f is uniformly continuous, then f restricted to each of [−1, 0) and (0, 1]
is uniformly continuous as well. By continuous extension theorem, this holds if and only
if f |[0,1) (resp. f |(−1,0]) can be extended to the endpoints so that f1 = f |[0,1] (resp. f2 =
f |[−1,0]) is continuous. Recall that such extensions must satisfies f1(0) = limx→0+ f(x)
and f2(0) = limx→0− f(x). So the one-sided limits exist. Suppose that they differ, then
we can find a sequence (xn) in (0, 1] so that limxn = 0; and a sequence (yn) in [−1, 0)
so that lim yn = 0. Then we know lim f(xn) ̸= lim f(yn), it follows that for ϵ chosen to
be say |f1(0)− f2(0)|/2, for any δ > 0, then there exists some N ∈ N so that for N large
enough, |xn−yn| < δ and |f(xn)−f(yn)| ≥ ϵ for n ≥ N . This contradicts with uniform
continuity of f . So f1(0) = f2(0) must hold.

(⇐) Suppose that f satisfies limx→0+ f = limx→0− f , then f can be extended to a con-
tinuous function on [−1, 1]. Since [−1, 1] is compact, it follows that the extension of f
to [−1, 1] is uniformly continuous, whose restriction onto [−1, 0) ∪ (0, 1], i.e. f itself, is
also clearly uniformly continuous.

8. Take f(x) = sin(πx), then f(n) = 0 for any ∈ Z, so lim f(n) = 0. But limx→∞ f(x) ̸= 0
since it is periodic.

Now suppose further that g(x) = f(x2) is uniformly continuous. For any ϵ > 0, by
assumption there is some N1 ∈ N so that |f(n)| = |g(

√
n)| < ϵ/2 for any n ≥ N1.

Now by uniform continuity, there is also some δ > 0 so that whenever |x − y| < δ, we
have |g(x) − g(y)| < ϵ/2. Since lim(

√
n+ 1 −

√
n) = 0, there exists N2 so that for

n ≥ N2, we can guarantee
√
n+ 1 −

√
n < δ. Now we take N = max{N1, N2}, and

any x ≥ N > 0, we have
√
x ∈ [

√
n,

√
n+ 1) for some n ≥ N . Then by construction,

|
√
x−

√
n| < δ, we conclude

|f(x)| = |g(
√
x)| ≤ |g(

√
x)− g(

√
n)|+ |g(

√
n)|

< ϵ/2 + ϵ/2 = ϵ.


