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1. (25 points)

Let C[a, b] be the set of continuous real-valued functions on the closed and bounded in-
terval [a, b]. Let F ⊆ C[a, b] be a non-empty subset that satisfies the following condition:
for any u, v ∈ F , u ∧ v ∈ F , where u ∧ v(x) := min{u(x), v(x)} for any x ∈ [a, b].

(i) Let g ∈ C[a, b], suppose that g(x) = inf{h(x) : h ∈ F , g ≤ h} for any x ∈ [a, b],
prove that for any ϵ > 0, there exists some f ∈ F such that |f(x) − g(x)| < ϵ for
all x ∈ [a, b].

(ii) Does the result of Part (i) holds if g is only assumed to be bounded, instead of
continuous?

(iii) Does the result of Part (i) holds if the domain [a, b] is replaced by the unbounded
closed interval [a,∞)?

Solutions.

(i) For each y ∈ [a, b], by assumption, given any ϵ > 0, there exists some hy ∈ F
with g ≤ h so that g(y) − ϵ < g(y) ≤ hy(y) < g(y) + ϵ. Here the subscript is
to signify that that the dependence of h on y. Since both hy and g are continuous
function, the strict inequality signs are preserved in a small neighborhood of y. More
specifically, if we consider the continuous function h̃y(x) = g(x) + ϵ − hy(x),
since ϵ := h̃y(y) > 0, by continuity there is some δ′y > 0 so that for any x ∈
(y− δ′y, y+ δ′y)∩ [a, b], |h̃y(x)− h̃y(y)| < ϵ. Hence we have h̃y(x) > h̃y(y)− ϵ = 0.
Likewise, g(x) − ϵ − hy(x) is negative at x = y, so there is some small δ′′y > 0 so
that on (y − δ′′y , y + δ′′y) ∩ [a, b], we have g(x)− ϵ− hy(x) < 0.
Now we take δy = min{δ′y, δ′′y}, then over Iy := (y − δy, y + δy), we have g − ϵ <
hy < g + ϵ. The collection of open intervals {Iy}y∈[a,b] forms an open cover of
[a, b], so by compactness there is a finite subcover {Iyi}ni=1. Now we claim that
f := min{hyi : i = 1, ..., n} is the desired function.
Firstly, f ∈ F because each of hyi ∈ F , and F is closed under taking minimum
of functions. Next, suppose that x ∈ [a, b], then x ∈ Iyi for some i, therefore
f(x) ≤ hyi(x) < g(x)+ ϵ. And also the minimum f(x) = hyj(x) for some j, so we
have g(x) − ϵ < g(x) ≤ hyj(x) = f(x). Since x is arbitrary, we have shown that
g(x)− ϵ < f(x) < g(x) + ϵ, i.e. |f(x)− g(x)| < ϵ.

(ii) No, a counter-example is given by F = {hn(x) := xn|n ∈ N} ⊂ C[0, 1]. The
function g(x) = 0 for x ∈ [0, 1) and g(1) = 1, is a bounded discontinuous function
that can be realized as the infimum of F . To see this, note that limn→∞ xn = 0 for
1 > x ≥ 0 and equals 1 if x = 1.



Then for ϵ = 1
2
, for any hn ∈ F , if we take y ≥ n

√
1
2
, then we have yn ≥ 1

2
. In other

words, |hn(y)− g(y)| ≥ 1
2
. So the result of Part (i) does not hold for this example.

(iii) No, a counter-example is given by F = {pn(x) := x
n
|n ∈ N} ⊂ C[0,∞). The

constant function g(x) = 0 is continuous and can be realized as the infimum of F ,
since limn→∞

x
n
= 0.

For ϵ = 1, and for any pn ∈ F , if we take y ≥ n, then pn(y) = y
n
≥ 1, so that

|pn(y)− g(y)| ≥ 1. The result of Part (i) does not hold for this example.

2. (25 points)

For x = (x1, ..., xm) and y = (y1, ..., ym) in Rm, let ||x|| :=
√
x2
1 + ...+ x2

m and ⟨x, y⟩ :=∑m
k=1 xkyk. Let A be an m × m matrix and let B := {x ∈ Rm : ||x|| ≤ 1}. Define

q : B → R by
q(x) := ⟨Ax, x⟩, x ∈ B.

(i) Show that {||Ax|| : x ∈ Rm, ||x|| = 1} is bounded.

(ii) Show that the function q is Lipschitz on B, i.e., there is some C > 0 such that
|q(x)− q(y)| ≤ C||x− y|| for any x, y ∈ B.

(iii) Show that

sup

{
|q(x)− q(y)|
||x− y||

: x, y ∈ B, x ̸= y

}
= 2 sup{|⟨Ax, x⟩| : x ∈ Rm, ||x|| = 1}.

Solutions.

(i) Denote A = (aij), where aij is the entry at the i-th row and j-th column. Then y =
(y1, ..., ym) = Ax is a vector whose i-th component is given by yi =

∑m
j=1 aijxj .

Write M = max{aij : 1 ≤ i, j ≤ m}, then for x ∈ Rm with ||x|| = 1, we have

||Ax||2 = ||y||2 =
m∑
i=1

(
m∑
j=1

aijxj

)2

≤
m∑
i=1

(
m∑
j=1

|aij| · |xj|

)2

≤
m∑
i=1

(
m∑
j=1

M |xj|

)2

= mM2

m∑
j=1

|xj|2 = mM2

That is, ||Ax|| ≤ M
√
m on ||x|| = 1. So it is bounded.

(ii) Note that the above argument implies that ||Ax|| ≤ M
√
m||x||. So we have

|q(x)− q(y)| = |⟨Ax, x⟩ − ⟨Ax, y⟩+ ⟨Ax, y⟩ − ⟨Ay, y⟩|
≤ |⟨Ax, x− y⟩|+ |⟨A(x− y), y⟩|
≤ ||Ax|| · ||x− y||+ ||A(x− y)|| · ||y||
≤ M

√
m||x|| · ||x− y||+M

√
m||x− y|| · ||y||

≤ 2M
√
m||x− y||.



The first inequality sign is due to triangle inequality and linearity of inner product.
The second inequality sign is the Cauchy-Schwarz inequality. The third inequality
is the estimate we obtained from Part (i). The last inequality is from the domain B,
where ||x|| ≤ 1.

(iii) We will first prove the result for A = AT a symmetric matrix. In that case, we will
need the following lemma.
Lemma. Let A be a symmetric matrix, then ||A|| := sup{||Ax|| : x ∈ Rm; ||x|| =
1} = sup{|⟨Ax, x⟩| : x ∈ Rm; ||x|| = 1}. The number ||A|| is usually called the
operator norm of A.
Proof. The (≥) is always true from the Cauchy-Schwarz inequality, regardless of
whether A is symmetric, as

|⟨Ax, x⟩| ≤ ||Ax|| · ||x|| = ||Ax||.

So the LHS is an upper bound of the values |⟨Ax, x⟩|.
For the (≤) direction. We note that a symmetric matrix over R is orthogonally
diagonalizable, i.e. there exists some orthogonal matrix Q such that QTAQ = D
is a digaonal matrix. Notice that an orthogonal matrix preserves the standard inner
product, i.e. ⟨Qx,Qy⟩ = ⟨x,QTQy⟩ = ⟨x, y⟩. Therefore Q : ∂B → ∂B is well-
defined and is a bijection, i.e. Q preserves the length one vectors. Now consider

qD(x) := ⟨Dx, x⟩ = ⟨QTAQx, x⟩ = ⟨AQx,Qx⟩ = qA(Qx).

Since Q is a bijection on {x : ||x|| = 1}, in particular sup{|⟨Dx, x⟩| : ||x|| = 1} =
sup{|⟨Ay, y⟩| : ||y|| = 1}; and likewise sup{||Dx|| : ||x|| = 1} = sup{||Ay|| :
||y|| = 1} by considering y = Qx. Therefore it suffices to prove (≤) for the diagonal
matrix D. Let λi be the eigenvalue with respect to the i-th vector in the eigenbasis,
suppose |λk| = ρ(A) = max{|λi| : i = 1, ...,m}. Then, over ||x|| = 1, we have

||Dx|| =

√√√√ n∑
i=1

λ2
ix

2
i ≤

√√√√λ2
k

n∑
i=1

x2
i = |λk| = |⟨Dek, ek⟩|,

where ek is the k-th standard basis vector. This proves the (≤) direction for D,
hence for A. Also note that this argument implies that both of these supremums are
in fact equal to |λk|. ■

By the above lemma, it suffices to prove the following equality in the case when A
is symmetric:

sup

{
|q(x)− q(y)|
||x− y||

: x, y ∈ B, x ̸= y

}
= 2||A||.

Proof. The (≤) direction is obtained by the calculation in Part (ii), where we have

|q(x)− q(y)| ≤ ||Ax|| · ||x− y||+ ||A(x− y)|| · ||y||

≤ ||A|| · ||x− y||+ ||A
(

x− y

||x− y||

)
|| · ||x− y||

≤ 2||A|| · ||x− y||.



For the (≥) direction, we take x = xk an unit length eigenvector for the eigenvalue
λk, and consider y = txk depending on a parameter t ∈ (0, 1). Then since q is
quadratic,

|q(xk)− q(txk)|
||(1− t)xk||

=
(1− t2)|q(xk)|
(1− t)||xk||

= (1 + t)|λk| → 2|λk| = 2||A|| as t → 1−.

So the supremum of the values of |q(x)−q(y)|
||x−y|| must be at least 2||A||. ■

This proves the equality of supremums in the case when A is symmetric. The general
case follows almost immediately by noting that qA+AT (x) = ⟨(A + AT )x, x⟩ =
2⟨Ax, x⟩ = 2qA(x). So we may apply the result for the symmetric case to the
symmetric matrix A+ AT , i.e. we have

2 sup

{
|qA(x)− qA(y)|

||x− y||
: x, y ∈ B;x ̸= y

}
= sup

{
|qA+AT (x)− qA+AT (y)|

||x− y||
: x, y ∈ B;x ̸= y

}
= 2 sup{|⟨(A+ AT )x, x⟩| : ||x|| = 1}
= 4 sup{|⟨Ax, x⟩| : ||x|| = 1}.

Remark: This question is more linear algebra than analysis. Alternatively, you can
prove the (≤) direction by a higher dimensional version of the mean value theorem
(although we haven’t prove this rigorously yet, see MATH2060). The idea is that B
is a convex domain, so for any two points x, y ∈ B where x ̸= y. We may connect
them via the straight line r(t) = tx + (1 − t)y for t ∈ [0, 1], which lie completely
inside B. Then apply the mean value theorem on f(t) = q(r(t)), which says that
q(x)−q(y) = f(1)−f(0) = f ′(t0)(1−0) = ∇q(r(t0))(r

′(t0)) for some t0 ∈ (0, 1).
We have r′(t) = x−y independent of t, and ∇q(x) = ⟨(A+AT )x,−⟩. So the above
gives

|q(x)− q(y)| = |⟨(A+ AT )(r(t0)), x− y⟩| ≤ ||A+ AT || · ||x− y||
= 2||A|| · ||x− y||.

More generally, this argument can be generalized to the case for f : K → R is
any differentiable function over a convex compact domain K ⊂ Rm, such that
{||∇f(x)|| : x ∈ K} is bounded, then f is Lipschitz with the minimal Lipschitz
constant equals to the supremum of ||∇f(x)||. The linear algebra we did for q(x) is
essentially trying to figure out what is this supremum of gradient.


