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1. (20 points)

For a non-negative function q on R, a real sequence (xn) is called q-Cauchy if for any
ϵ > 0, there is some N ∈ N so that for m,n ≥ N , we have |q(xm − xn)| < ϵ. Let
ϕ : R → R be a function satisfying (i) ϕ(s + t) = ϕ(s) + ϕ(t) for any s, t ∈ R, and (ii)
for any (xn) so that x := limxn and y := limϕ(xn) both exist, we have y = ϕ(x). Take
q(t) := |t|+ |ϕ(t)| for t ∈ R.

(i) Let (xn) be a sequence, show that if there is a number L so that lim q(xn − L) = 0,
then (xn) is q-Cauchy.

(ii) Is the number L in part (i) unique if it exists?

(iii) Does the converse to part (i) hold true?

Solutions.

(i) Suppose (xn) is a sequence and L ∈ R so that lim q(xn − L) = 0, then given
arbitrary ϵ > 0, there exists N ∈ N so that for n ≥ N , we have

|q(xn − L)| = |xn − L|+ |ϕ(xn − L)| < ϵ

2
.

Therefore for the same N as above, and any n,m ≥ N , we have

|q(xn − xm)| = |xn − xm|+ |ϕ(xn − xm)|
= |(xn − L)− (xm − L)|+ |ϕ((xn − L)− (xm − L))|
≤ |xn − L|+ |xm − L|+ |ϕ(xn − L)|+ |ϕ(xm − L)|

<
ϵ

2
+

ϵ

2
= ϵ,

where in the above we have used additivity of ϕ and the triangle inequality. This
shows that (xn) is q-Cauchy.

(ii) We claim that L is in fact equals to limxn, hence is unique by uniqueness of limit
of sequence. This follows directly from the observation that

|xn − L| ≤ |xn − L|+ |ϕ(xn − L)| = |q(xn − L)|.

So if lim q(xn − L) = 0, we have limxn = L, so such L must be unique.

(iii) The converse holds true. Suppose (xn) is a q-Cauchy sequence, again by a similar
observation as above:

|xn − xm| ≤ |xn − xm|+ |ϕ(xn − xm)| = |q(xn − xm)|.



We know that (xn) itself is a Cauchy sequence, therefore by Cauchy criterion (xn) is
convergent, with limit say L := limxn. Also note that by the same argument, since
|ϕ(xn − xm)| = |ϕ(xn)− ϕ(xm)|, we know that (ϕ(xn)) is also a Cauchy sequence,
and is convergent with limit M := limϕ(xn). By the assumption on the properties
of ϕ, we have ϕ(L) = M .
Now we claim that L given above satisfies lim q(xn−L) = 0. This is simply because
q(xn−L) = |xn−L|+|ϕ(xn−L)| = |xn−L|+|ϕ(xn)−M |, so by the convergence
limxn = L and limϕ(xn) = M , we have lim q(xn − L) = 0. ■

Remark: As some of you pointed out, the function ϕ(x) satisfying the assumed properties
must be of the form ϕ(x) = αx for some α ∈ R, however this knowledge is not necessary
to solve Q1. Exercise: Prove this. (Hint: Prove this for x ∈ Q first.)

2. (30 points)

(i) Let (Fk) be a sequence of non-empty compact subsets of R so that
⋂n

k=1 Fk ̸= ∅ for
any n ∈ N, is it true that

⋂∞
k=1 Fk ̸= ∅?

(ii) Let (Jk) be a sequence of closed and bounded intervals, suppose that Ji ∩ Jk ̸= ∅
for any i, k ∈ N, is it true that

⋂∞
k=1 Jk ̸= ∅?

(iii) Is it possible to generalize the result of part (ii) to the two-dimensional case? That
is, if (Ak) = [ak, bk]× [ck, dk] is a sequence of closed and bounded rectangles in R2,
so that Ai ∩ Ak ̸= ∅ for any i, k ∈ N, does it follow that

⋂∞
k=1Ak ̸= ∅?

Solutions.

(i) It is true. Denote Gn :=
⋂n

k=1 Fk. Gn is closed because it is an intersection of closed
subsets: if {xn} is a convergent sequence in Gn, by closedness of Fk, limxn ∈ Fk for
k = 1, ..., n, hence limxn ∈ Gn as well. Gn is also bounded because it is a subset of
bounded F1. Hence Gn is a non-empty compact subset. Now denote sn = supGn, since
Gn is a decreasing sequence of subsets, (sn) is also decreasing. It is bounded below by
the lower bound of F1. By monotone convergence theorem, s := lim sn exists.

We claim that s ∈ Gn for all n ∈ N, therefore s ∈
⋂∞

n=1Gn =
⋂∞

k=1 Fk, thus proving that
the intersection is non-empty. Fix any n ∈ N, notice that for m ≥ n, since Gm is closed,
we know that sm = supGm ∈ Gm ⊂ Gn. The tail of the sequence (sm) lies completely
inside of Gn for any fixed n. In other words, the subsequence s′k defined by s′k = sn+k

for k ∈ N is a subsequence contained entirely inside Gn, so s = lim sm = lim s′k ∈ Gn.
This holds for arbitrary n.

(ii) The claim is true. By part (i), it suffices to prove that
⋂n

k=1 Jk is non-empty. Write
Jk = [ak, bk], notice that

x ∈
n⋂

k=1

Jk ⇐⇒ x ∈ Jk, ∀k ∈ {1, ..., n}

⇐⇒ ak ≤ x ≤ bk, ∀k ∈ {1, ..., n}
⇐⇒ max

1≤k≤n
{ak} ≤ x ≤ min

1≤k≤n
{bk}.



Therefore, we observe that such x exists if and only if max1≤k≤n{ak} ≤ min1≤k≤n{bk}.
Suppose on the contrary that it was false, i.e. max1≤k≤n{ak} > min1≤k≤n{bk}, i.e. there
are some distinct 1 ≤ k, l ≤ n so that ak > bl. Then it follows that bk ≥ ak > bl ≥ al,
and hence Jk ∩ Jl = ∅, this is a contradiction. This proves that

⋂n
k=1 Jk is non-empty.

(iii) Write each Ak = Ik × Jk where Ik and Jk are closed and bounded intervals (in the first
and second coordinates respectively), notice that Ai ∩ Ak ̸= ∅ if and only if Ii ∩ Ik ̸= ∅
and Ji ∩ Jk ̸= ∅. Therefore, by the results of part (ii), the intersections I∞ :=

⋂∞
k=1 Ik

and J∞ :=
⋂∞

k=1 Jk are both non-empty. Pick any x ∈ I∞ and y ∈ J∞, then (x, y) ∈
I∞ × J∞ =

⋂∞
k=1 Ak, so it is non-empty.


