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1. (20 points)

For a non-negative function ¢ on R, a real sequence (x,,) is called ¢g-Cauchy if for any
e > 0, there is some N € N so that for m,n > N, we have |q(z,, — z,)| < €. Let
¢ : R — R be a function satisfying (i) ¢(s + t) = ¢(s) + ¢(t) for any s,¢ € R, and (ii)
for any (x,,) so that z := lim x,, and y := lim ¢(x,,) both exist, we have y = ¢(x). Take
q(t) := |t| + |p(t)| for t € R.

(i) Let (z,) be a sequence, show that if there is a number L so that lim ¢(x,, — L) = 0,
then (z,,) is g-Cauchy.
(ii) Is the number L in part (i) unique if it exists?
(i11)) Does the converse to part (i) hold true?

Solutions.

(i) Suppose (x,) is a sequence and L € R so that limg(z,, — L) = 0, then given
arbitrary € > 0, there exists N € N so that for n > N, we have

€
a(@n = D) = lea = L] +6(zn — D] < 5.
Therefore for the same NV as above, and any n, m > N, we have

9(xn — Tm)| = [0 — T| + 920 — Ti)|
= [(xn — L) = (xm — L)| + |¢((xn — L) = (xm — L))|
<|zn — Ll + |2m — L| + [¢(xn — L)| + |¢p(x, — L)

<€+€
— — =€
2 2 ’

where in the above we have used additivity of ¢ and the triangle inequality. This
shows that (z,,) is g-Cauchy.

(i) We claim that L is in fact equals to lim x,,, hence is unique by uniqueness of limit
of sequence. This follows directly from the observation that

’xn - L’ S ’xn - L‘ + |¢($n - L)’ = ‘Q(xn - L)’

So if lim g(z, — L) = 0, we have lim z,, = L, so such L must be unique.

(iii) The converse holds true. Suppose (z,,) is a g-Cauchy sequence, again by a similar
observation as above:

| T — xm| < |xn - mm| + |¢($n - xm)| = |q($n - xm)l



2.

We know that (x,,) itself is a Cauchy sequence, therefore by Cauchy criterion (x,,) is
convergent, with limit say L := lim z,,. Also note that by the same argument, since
|p(zn, — )| = |p(2n) — P(x),)|, we know that (¢(z,,)) is also a Cauchy sequence,
and is convergent with limit M := lim ¢(z,,). By the assumption on the properties
of ¢, we have ¢(L) = M.

Now we claim that L given above satisfies lim ¢(z,,— L) = 0. This is simply because
q(x,—L) = |z, — L|+|o(x,— L)| = |xn— L|+|p(x,) — M]|, so by the convergence
limz,, = L and lim ¢(z,,) = M, we have lim ¢(z,, — L) = 0. |

Remark: As some of you pointed out, the function ¢(z) satisfying the assumed properties
must be of the form ¢(x) = ax for some o € R, however this knowledge is not necessary
to solve Q1. Exercise: Prove this. (Hint: Prove this for x € Q first.)

(30 points)
(i) Let (F};) be a sequence of non-empty compact subsets of R so that (;'_, F}, # 0 for
any n € N, is it true that (), F), # 0?

(ii) Let (Jy) be a sequence of closed and bounded intervals, suppose that J; N J # ()
for any i, k € N, is it true that ()~ Ji, # 0?

(iii) Is it possible to generalize the result of part (ii) to the two-dimensional case? That
is, if (Ax) = [ag, br] X [ck, di] is a sequence of closed and bounded rectangles in R?,
so that A; N Ay, # () for any i, k € N, does it follow that (), A, # 02

Solutions.

(1)

(i)

It is true. Denote G,, := ﬂzzl F.. G, is closed because it is an intersection of closed
subsets: if {x,} is a convergent sequence in G, by closedness of Fj, limz, € F} for
k =1,...,n, hence limz, € G, as well. (G, is also bounded because it is a subset of
bounded F}. Hence G, is a non-empty compact subset. Now denote s,, = sup G, since
G, is a decreasing sequence of subsets, (s,,) is also decreasing. It is bounded below by
the lower bound of F. By monotone convergence theorem, s := lim s,, exists.

We claim that s € G, forall n € N, therefore s € (2, G,, = (o, F, thus proving that
the intersection is non-empty. Fix any n € N, notice that for m > n, since (G, is closed,
we know that s, = sup G,,, € G, C G,,. The tail of the sequence (s,,) lies completely
inside of G,, for any fixed n. In other words, the subsequence s defined by s}, = S,
for k € N is a subsequence contained entirely inside G,,, so s = lim s,,, = lim s} € G,,.
This holds for arbitrary n.

The claim is true. By part (i), it suffices to prove that (;_, Jj, is non-empty. Write
Jr = |ag, bx], notice that

ve (Ve x€ Vhe{l,..,n}
k=1
—a, <x<b, Vke{l, .., n}

<z< 1
= gkaél{ak} <z < 121]{1;1”{6,{}



Therefore, we observe that such x exists if and only if max;<x<,{ar} < minj<x<,{bx}.
Suppose on the contrary that it was false, i.e. maxj<x<,{ar} > minj<x<,{by}, i.e. there
are some distinct 1 < k,[ < n so that a; > b;. Then it follows that b, > ap > b; > ay,
and hence J;, N .J; = (), this is a contradiction. This proves that (),_, Jj, is non-empty.

(iii) Write each A, = I, x J, where I, and .J,, are closed and bounded intervals (in the first
and second coordinates respectively), notice that A; N Ay # 0 if and only if I, N I}, # ()
and J; N J, # (. Therefore, by the results of part (ii), the intersections I, := ﬂzozl 1
and J» = (,—; Ji are both non-empty. Pick any x € I and y € J., then (z,y) €
I X Joo = iy Ak, so it is non-empty.



